Plastic floating on the ocean surface represents about 1 % of all plastic in the ocean, despite the buoyancy of most plastics. Biofouling can help to sink debris, which could explain this discrepancy. A set of laboratory experiments was conducted to investigate biofilm-induced effects on the buoyancy of different plastic debris. Ten materials of different densities (buoyant/non-buoyant), sizes (micro/meso/macro), and shapes (irregular/spherical/cylindrical/flat), including facemasks and cotton swabs, were evaluated. Biofilm was incubated in these materials from a few weeks to three months to investigate the effect of different growth levels on their buoyancy. Biofilm levels and rising/settling velocities were measured and compared at seven time-points. The results show a hindered buoyancy for solid materials, while hollow and open materials showed the opposite trend in early biofilm colonization stages. A relationship was established between biofilm-growth and equivalent sphere diameter that can be used to improve predictive modeling of plastic-debris transport.

Biofilm-induced effect on the buoyancy of plastic debris: An experimental study

Misic C.;Cutroneo L.;Capello M.;Besio G.
2023-01-01

Abstract

Plastic floating on the ocean surface represents about 1 % of all plastic in the ocean, despite the buoyancy of most plastics. Biofouling can help to sink debris, which could explain this discrepancy. A set of laboratory experiments was conducted to investigate biofilm-induced effects on the buoyancy of different plastic debris. Ten materials of different densities (buoyant/non-buoyant), sizes (micro/meso/macro), and shapes (irregular/spherical/cylindrical/flat), including facemasks and cotton swabs, were evaluated. Biofilm was incubated in these materials from a few weeks to three months to investigate the effect of different growth levels on their buoyancy. Biofilm levels and rising/settling velocities were measured and compared at seven time-points. The results show a hindered buoyancy for solid materials, while hollow and open materials showed the opposite trend in early biofilm colonization stages. A relationship was established between biofilm-growth and equivalent sphere diameter that can be used to improve predictive modeling of plastic-debris transport.
File in questo prodotto:
File Dimensione Formato  
2023_MPB_bf.pdf

accesso chiuso

Tipologia: Documento in Post-print
Dimensione 3.34 MB
Formato Adobe PDF
3.34 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1143717
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact