Implicit regularization refers to the property of optimization algorithms to be biased towards a certain class of solutions. This property is relevant to understand the behavior of modern machine learning algorithms as well as to design efficient computational methods. While the case where the bias is given by a Euclidean norm is well understood, implicit regularization schemes for more general classes of biases are much less studied. In this work, we consider the case where the bias is given by a strongly convex functional, in the context of linear models, and data possibly corrupted by noise. In particular, we propose and analyze accelerated optimization methods and highlight a trade-off between convergence speed and stability. Theoretical findings are complemented by an empirical analysis on high-dimensional inverse problems in machine learning and signal processing, showing excellent results compared to the state of the art.
Implicit regularization with strongly convex bias: Stability and acceleration
Villa, S;Rosasco, L
2023-01-01
Abstract
Implicit regularization refers to the property of optimization algorithms to be biased towards a certain class of solutions. This property is relevant to understand the behavior of modern machine learning algorithms as well as to design efficient computational methods. While the case where the bias is given by a Euclidean norm is well understood, implicit regularization schemes for more general classes of biases are much less studied. In this work, we consider the case where the bias is given by a strongly convex functional, in the context of linear models, and data possibly corrupted by noise. In particular, we propose and analyze accelerated optimization methods and highlight a trade-off between convergence speed and stability. Theoretical findings are complemented by an empirical analysis on high-dimensional inverse problems in machine learning and signal processing, showing excellent results compared to the state of the art.File | Dimensione | Formato | |
---|---|---|---|
50_Implicit_AA_final.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Dimensione
586.49 kB
Formato
Adobe PDF
|
586.49 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.