Depth sensors play a major role in the control pipeline of semi-autonomous prostheses. The feed from these sensors can complement, or even substitute, the information retrieved by RGB cameras. The paper explores the application of depth sensors to affordance detection, to recognize the graspable part of an object in foreground images. The experiments confirm that the depth (“D”) components can boost the accuracy in predicting the affordable parts of an object, when they are matched with state-of-the-art computer vision architectures. A prototype of a portable inference system with real-time performances has been assembled using a Jetson Tx2 and a Realsense D435i camera, confirming the proposal’s suitability for semi-autonomous prostheses.

Affordance Segmentation Using RGB-D Sensors for Application in Portable Embedded Systems

Ragusa E.;Zunino R.;Gastaldo P.
2023-01-01

Abstract

Depth sensors play a major role in the control pipeline of semi-autonomous prostheses. The feed from these sensors can complement, or even substitute, the information retrieved by RGB cameras. The paper explores the application of depth sensors to affordance detection, to recognize the graspable part of an object in foreground images. The experiments confirm that the depth (“D”) components can boost the accuracy in predicting the affordable parts of an object, when they are matched with state-of-the-art computer vision architectures. A prototype of a portable inference system with real-time performances has been assembled using a Jetson Tx2 and a Realsense D435i camera, confirming the proposal’s suitability for semi-autonomous prostheses.
2023
978-3-031-30332-6
978-3-031-30333-3
File in questo prodotto:
File Dimensione Formato  
APPLEPIES2022 (3) (1).pdf

accesso chiuso

Tipologia: Documento in Pre-print
Dimensione 192.5 kB
Formato Adobe PDF
192.5 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
978-3-031-30333-3_14.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 266.89 kB
Formato Adobe PDF
266.89 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1141933
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact