This paper investigates the mechanical behaviour of a hypercompacted unstabilized earth material manufactured by compressing a moist soil to very high pressures up to 100 MPa. The hypercompaction procedure increases material density, which in turn improves mechanical characteristics. Samples were manufactured at the scale of both small cylinders and masonry bricks. The effect of ambient humidity on the mechanical characteristics of the material was investigated at the scale of cylindrical samples, showing that both strength and stiffness are sensitive to environmental conditions and tend to increase as ambient humidity reduces. The strength of the bricks was instead investigated under laboratory ambient conditions by using different experimental configurations to assess the influence of sample slenderness and friction confinement. Additional tests were also performed to evaluate the influence of mortar joints and compaction-induced anisotropy. Overall, the hypercompacted earth material exhibits mechanical characteristics that are comparable with those of traditional building materials, such as fired bricks, concrete blocks or stabilized compressed earth.

Mechanical behaviour of hypercompacted earth for building construction

Bruno A. W.;Gallipoli D.;
2017-01-01

Abstract

This paper investigates the mechanical behaviour of a hypercompacted unstabilized earth material manufactured by compressing a moist soil to very high pressures up to 100 MPa. The hypercompaction procedure increases material density, which in turn improves mechanical characteristics. Samples were manufactured at the scale of both small cylinders and masonry bricks. The effect of ambient humidity on the mechanical characteristics of the material was investigated at the scale of cylindrical samples, showing that both strength and stiffness are sensitive to environmental conditions and tend to increase as ambient humidity reduces. The strength of the bricks was instead investigated under laboratory ambient conditions by using different experimental configurations to assess the influence of sample slenderness and friction confinement. Additional tests were also performed to evaluate the influence of mortar joints and compaction-induced anisotropy. Overall, the hypercompacted earth material exhibits mechanical characteristics that are comparable with those of traditional building materials, such as fired bricks, concrete blocks or stabilized compressed earth.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1141495
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 42
social impact