In some circumstances, it is impossible to exploit resonance crossings to identify the modal properties of rotor disks. In these cases, the identification process must rely on nonsynchronous vibrations and becomes challenging for two reasons. First, the signals are weak (compared to the levels measured during resonance crossings) and random, thus an averaging procedure is necessary. Second, the dynamical system is time-variant due to the variation of the rotor speed. This paper presents a modal identification procedure formulated in the framework of the time-frequency analysis. A region of the time-frequency plane is stretched to map the system into a fictitious linear time-invariant (LTI) system. Then, the power spectral density function (PSD) of the response is computed by an averaging procedure. Finally, the modal properties are estimated through an output-only modal identification algorithm. The procedure is applied to simulated and experimental data regarding a bladed disk of a steam turbine.

Modal Identification of Bladed Disks by Time-Frequency Analysis of the Nonsynchronous Response

Carassale, L;Guida, R;Marre-Brunenghi, M
2023-01-01

Abstract

In some circumstances, it is impossible to exploit resonance crossings to identify the modal properties of rotor disks. In these cases, the identification process must rely on nonsynchronous vibrations and becomes challenging for two reasons. First, the signals are weak (compared to the levels measured during resonance crossings) and random, thus an averaging procedure is necessary. Second, the dynamical system is time-variant due to the variation of the rotor speed. This paper presents a modal identification procedure formulated in the framework of the time-frequency analysis. A region of the time-frequency plane is stretched to map the system into a fictitious linear time-invariant (LTI) system. Then, the power spectral density function (PSD) of the response is computed by an averaging procedure. Finally, the modal properties are estimated through an output-only modal identification algorithm. The procedure is applied to simulated and experimental data regarding a bladed disk of a steam turbine.
File in questo prodotto:
File Dimensione Formato  
gtp_145_02_021020.pdf

accesso chiuso

Tipologia: Documento in Post-print
Dimensione 2.53 MB
Formato Adobe PDF
2.53 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1136558
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact