Ethyl glucuronide (EtG) is a minor, non-oxidative ethanol metabolite detectable in several matrices for specific periods of time. In recent years, quantification of EtG in hair has been established as the most reliable biomarker for long-term alcohol consumption, with the Society of Hair Testing offering cut-off values for assessment of both abstinence and heavy drinking. Instrumental constrains and wide inter- and intra-laboratory variability represent the ultimate barriers to widespread acceptance of hair EtG determination in the forensic context. In this study, a new analytical method for hair EtG based on gas chromatographic (GC) separation, electron impact (EI) ionization, and tandem mass spectrometry (MS/MS) detection was developed and validated. At the same time, several parameters for sample pretreatment and instrumental analysis were optimized using real hair samples obtained from different drinking subjects. A full-factorial design-of-experiment approach included procedures for hair washing, pulverization, and extraction. Rigorous multi-step washing proved not to reduce the EtG content extracted in the subsequent sample incubation. Hair pulverization with a ball mill significantly improved the EtG extraction from the keratin matrix and allowed us to reduce the time needed for the subsequent extraction step, without affecting the extraction recovery. The hair extract was derivatized with N-methyl-N-(trimethylsilyl)-trifluoroacetamide. Upon electron impact ionization of the EtG-TMS derivative, triple quadrupole mass analyzers were operated in the selected reaction monitoring (SRM) mode using the fragment m/z 405 as the precursor ion (m/z 410 for the EtG-D5 internal standard), the transitions m/z 405 → 359 and m/z 410 → 359 for quantitation, and m/z 405 → 331 and m/z 405 → 287 for qualification/confirmation, all at 10 V collision energy. The final method was fully validated and then applied to 25 real hair samples. The calibration curve proved linear between 6 and 60 pg/mg. The limit of detection (LOD) was 4 pg/mg. Intra- and inter-assay precision and accuracy tests showed a variability and bias close to 15% or lower over the entire calibration range. The new method is routinely applied in the Italian State Police’s toxicology laboratory for hair analyses addressed to exclude excessive alcohol drinking and verify the psycho-physical requirements of the personnel.
Development and Validation of a GC-EI-MS/MS Method for Ethyl Glucuronide Quantification in Human Hair
Gariglio S.;
2022-01-01
Abstract
Ethyl glucuronide (EtG) is a minor, non-oxidative ethanol metabolite detectable in several matrices for specific periods of time. In recent years, quantification of EtG in hair has been established as the most reliable biomarker for long-term alcohol consumption, with the Society of Hair Testing offering cut-off values for assessment of both abstinence and heavy drinking. Instrumental constrains and wide inter- and intra-laboratory variability represent the ultimate barriers to widespread acceptance of hair EtG determination in the forensic context. In this study, a new analytical method for hair EtG based on gas chromatographic (GC) separation, electron impact (EI) ionization, and tandem mass spectrometry (MS/MS) detection was developed and validated. At the same time, several parameters for sample pretreatment and instrumental analysis were optimized using real hair samples obtained from different drinking subjects. A full-factorial design-of-experiment approach included procedures for hair washing, pulverization, and extraction. Rigorous multi-step washing proved not to reduce the EtG content extracted in the subsequent sample incubation. Hair pulverization with a ball mill significantly improved the EtG extraction from the keratin matrix and allowed us to reduce the time needed for the subsequent extraction step, without affecting the extraction recovery. The hair extract was derivatized with N-methyl-N-(trimethylsilyl)-trifluoroacetamide. Upon electron impact ionization of the EtG-TMS derivative, triple quadrupole mass analyzers were operated in the selected reaction monitoring (SRM) mode using the fragment m/z 405 as the precursor ion (m/z 410 for the EtG-D5 internal standard), the transitions m/z 405 → 359 and m/z 410 → 359 for quantitation, and m/z 405 → 331 and m/z 405 → 287 for qualification/confirmation, all at 10 V collision energy. The final method was fully validated and then applied to 25 real hair samples. The calibration curve proved linear between 6 and 60 pg/mg. The limit of detection (LOD) was 4 pg/mg. Intra- and inter-assay precision and accuracy tests showed a variability and bias close to 15% or lower over the entire calibration range. The new method is routinely applied in the Italian State Police’s toxicology laboratory for hair analyses addressed to exclude excessive alcohol drinking and verify the psycho-physical requirements of the personnel.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.