Background and PurposeChimeric antigen receptor (CAR) T-cell therapy is potentially associated with treatment-related toxicities mainly consisting of cytokine release syndrome (CRS) and immune-effector cell-associated neurotoxicity syndrome (ICANS). We evaluated brain metabolic correlates of CRS with and without ICANS in diffuse large B-cell lymphoma patients treated with CAR-T. MethodsTwenty-one refractory DLCBLs underwent whole-body and brain [F-18]-fluorodeoxyglucose (FDG) PET before and 30 days after treatment with CAR-T. Five patients did not develop inflammatory-related side effects, 11 patients developed CRS, while in 5 patients CRS evolved in ICANS. Baseline and post-CAR-T brain FDG-PET were compared with a local controls dataset to identify hypometabolic patterns both at single-patient and group levels (p < .05 after correction for family-wise error [FWE). Metabolic tumor volume (MTV) and total lesion glycolysis (TLG) were computed on baseline FDG-PET and compared between patients' subgroups (t-test). ResultsICANS showed an extended and bilateral hypometabolic pattern mainly involving the orbitofrontal cortex, frontal dorsolateral cortex, and anterior cingulate (p < .003 FWE-corrected). CRS without ICANS showed significant hypometabolism in less extended clusters mainly involving bilateral medial and lateral temporal lobes, posterior parietal lobes, anterior cingulate, and cerebellum (p < .002 FWE-corrected). When compared, ICANS showed a more prominent hypometabolism in the orbitofrontal and frontal dorsolateral cortex in both hemispheres than CRS (p < .002 FWE-corrected). Mean baseline MTV and TLG were significantly higher in ICANS than CRS (p < .02). ConclusionsPatients with ICANS are characterized by a frontolateral hypometabolic signature coherently with the hypothesis of ICANS as a predominant frontal syndrome and with the more prominent susceptibility of frontal lobes to cytokine-induced inflammation.

Brain FDG-PET findings in chimeric antigen receptor T-cell therapy neurotoxicity for diffuse large B-cell lymphoma

Morbelli, Silvia;Gambella, Massimiliano;Ghiggi, Chiara;Bauckneht, Matteo;Raimondo, Tania Di;Lapucci, Caterina;Sambuceti, Gianmario;Inglese, Matilde;Angelucci, Emanuele
2023-01-01

Abstract

Background and PurposeChimeric antigen receptor (CAR) T-cell therapy is potentially associated with treatment-related toxicities mainly consisting of cytokine release syndrome (CRS) and immune-effector cell-associated neurotoxicity syndrome (ICANS). We evaluated brain metabolic correlates of CRS with and without ICANS in diffuse large B-cell lymphoma patients treated with CAR-T. MethodsTwenty-one refractory DLCBLs underwent whole-body and brain [F-18]-fluorodeoxyglucose (FDG) PET before and 30 days after treatment with CAR-T. Five patients did not develop inflammatory-related side effects, 11 patients developed CRS, while in 5 patients CRS evolved in ICANS. Baseline and post-CAR-T brain FDG-PET were compared with a local controls dataset to identify hypometabolic patterns both at single-patient and group levels (p < .05 after correction for family-wise error [FWE). Metabolic tumor volume (MTV) and total lesion glycolysis (TLG) were computed on baseline FDG-PET and compared between patients' subgroups (t-test). ResultsICANS showed an extended and bilateral hypometabolic pattern mainly involving the orbitofrontal cortex, frontal dorsolateral cortex, and anterior cingulate (p < .003 FWE-corrected). CRS without ICANS showed significant hypometabolism in less extended clusters mainly involving bilateral medial and lateral temporal lobes, posterior parietal lobes, anterior cingulate, and cerebellum (p < .002 FWE-corrected). When compared, ICANS showed a more prominent hypometabolism in the orbitofrontal and frontal dorsolateral cortex in both hemispheres than CRS (p < .002 FWE-corrected). Mean baseline MTV and TLG were significantly higher in ICANS than CRS (p < .02). ConclusionsPatients with ICANS are characterized by a frontolateral hypometabolic signature coherently with the hypothesis of ICANS as a predominant frontal syndrome and with the more prominent susceptibility of frontal lobes to cytokine-induced inflammation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1127355
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact