It is proven that the homotopy time-slice axiom for many types of algebraic quantum field theories (AQFTs) taking values in chain complexes can be strictified. This includes the cases of Haag–Kastler-type AQFTs on a fixed globally hyperbolic Lorentzian manifold (with or without time-like boundary), locally covariant conformal AQFTs in two spacetime dimensions, locally covariant AQFTs in one spacetime dimension, and the relative Cauchy evolution. The strictification theorems established in this paper prove that, under suitable hypotheses that hold true for the examples listed above, there exists a Quillen equivalence between the model category of AQFTs satisfying the homotopy time-slice axiom and the model category of AQFTs satisfying the usual strict time-slice axiom.

Strictification theorems for the homotopy time-slice axiom

Benini M.;
2023-01-01

Abstract

It is proven that the homotopy time-slice axiom for many types of algebraic quantum field theories (AQFTs) taking values in chain complexes can be strictified. This includes the cases of Haag–Kastler-type AQFTs on a fixed globally hyperbolic Lorentzian manifold (with or without time-like boundary), locally covariant conformal AQFTs in two spacetime dimensions, locally covariant AQFTs in one spacetime dimension, and the relative Cauchy evolution. The strictification theorems established in this paper prove that, under suitable hypotheses that hold true for the examples listed above, there exists a Quillen equivalence between the model category of AQFTs satisfying the homotopy time-slice axiom and the model category of AQFTs satisfying the usual strict time-slice axiom.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1124975
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact