Snow represents a fundamental water resource for mountain and lowland areas. Changes in the frequency and magnitude of snow droughts can significantly impact societies and ecosystems that rely on snowmelt to satisfy their water demands. Here we documented and quantified the snow drought that affected the Italian Alps during the early 2020s. We used 15 long-term snow-depth series (period 1930–2023, elevation range: 864–2200 m a.s.l.) to simulate the snow water equivalent (SWE), in conjunction with climatic reanalysis data and river discharge observations. We found that the March SWE anomaly in 2022 reached the lowest value in the last century, due to an unprecedented combination of drier- and warmer-than-normal conditions in the period December 2021–March 2022. This event contributed to causing critical hydrological conditions in the Po and Adige rivers which, during Summer 2022, experienced the worst hydrological drought ever recorded. Despite its unprecedented magnitude, the snow drought in 2022 is part of a recent pattern of increased intensity and frequency of snow-drought events since the 1990s, due to the combined increasing occurrence of warmer- and drier-than-normal climatic conditions during the snow season. Strikingly, during Winter 2022/2023, the March SWE anomaly reached the third lowest value in the analysed period, resulting in exceptional snow droughts during two consecutive winters. The snow-drought conditions that occurred in the early 2020s in the Italian Alps warn of the pressing need for the implementation of impact mitigation measures to adapt to the fast changing snow and climatic conditions.
Unprecedented snow-drought conditions in the Italian Alps during the early 2020s
Cianfarra, Paola;
2023-01-01
Abstract
Snow represents a fundamental water resource for mountain and lowland areas. Changes in the frequency and magnitude of snow droughts can significantly impact societies and ecosystems that rely on snowmelt to satisfy their water demands. Here we documented and quantified the snow drought that affected the Italian Alps during the early 2020s. We used 15 long-term snow-depth series (period 1930–2023, elevation range: 864–2200 m a.s.l.) to simulate the snow water equivalent (SWE), in conjunction with climatic reanalysis data and river discharge observations. We found that the March SWE anomaly in 2022 reached the lowest value in the last century, due to an unprecedented combination of drier- and warmer-than-normal conditions in the period December 2021–March 2022. This event contributed to causing critical hydrological conditions in the Po and Adige rivers which, during Summer 2022, experienced the worst hydrological drought ever recorded. Despite its unprecedented magnitude, the snow drought in 2022 is part of a recent pattern of increased intensity and frequency of snow-drought events since the 1990s, due to the combined increasing occurrence of warmer- and drier-than-normal climatic conditions during the snow season. Strikingly, during Winter 2022/2023, the March SWE anomaly reached the third lowest value in the analysed period, resulting in exceptional snow droughts during two consecutive winters. The snow-drought conditions that occurred in the early 2020s in the Italian Alps warn of the pressing need for the implementation of impact mitigation measures to adapt to the fast changing snow and climatic conditions.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.