Layered double hydroxides (LDHs) play a fundamental role in the processes for the abatement of pollutants in water, with reference to heavy metal decontamination. The research on the topic is multiobjective target oriented, aiming at combining environmental remediation with the possibility of reusing a sorbent as many times as possible, turning it into a renewable resource. In this study, the antibacterial and catalytic properties of a ZnAl-SO4 LDH and its resulting product after being subjected to a Cr(VI) remediation process are compared. Both solid substrates have also been tested after undergoing a thermal annealing process. The sorbent (previously described and tested for remediation) has been investigated for its antibacterial activity in view of further surgery and drug delivery applications. Finally, its photocatalytic properties have been experimentally tested in the degradation of a model pollutant, i.e., Methyl Orange (MO), under solar-simulated light. Identifying the best recycling strategy for these materials requires an accurate knowledge of their physicochemical properties. The results show that both the antimicrobial activity and the photocatalytic performance may considerably improve after thermal annealing.

Layered double hydroxides (LDHs) play a fundamental role in the processes for the abatement of pollutants in water, with reference to heavy metal decontamination. The research on the topic is multiobjective target oriented, aiming at combining environmental remediation with the possibility of reusing a sorbent as many times as possible, turning it into a renewable resource. In this study, the antibacterial and catalytic properties of a ZnAl-SO4 LDH and its resulting product after being subjected to a Cr(VI) remediation process are compared. Both solid substrates have also been tested after undergoing a thermal annealing process. The sorbent (previously described and tested for remediation) has been investigated for its antibacterial activity in view of further surgery and drug delivery applications. Finally, its photocatalytic properties have been experimentally tested in the degradation of a model pollutant, i.e., Methyl Orange (MO), under solar-simulated light. Identifying the best recycling strategy for these materials requires an accurate knowledge of their physicochemical properties. The results show that both the antimicrobial activity and the photocatalytic performance may considerably improve after thermal annealing.

Antibacterial and Photocatalytic Activities of LDH-Based Sorbents of Different Compositions

Anna Maria Cardinale;Stefano Alberti;Andrea Pietro Reverberi;Nicolò Ghibaudo;Marco Fortunato
2023-01-01

Abstract

Layered double hydroxides (LDHs) play a fundamental role in the processes for the abatement of pollutants in water, with reference to heavy metal decontamination. The research on the topic is multiobjective target oriented, aiming at combining environmental remediation with the possibility of reusing a sorbent as many times as possible, turning it into a renewable resource. In this study, the antibacterial and catalytic properties of a ZnAl-SO4 LDH and its resulting product after being subjected to a Cr(VI) remediation process are compared. Both solid substrates have also been tested after undergoing a thermal annealing process. The sorbent (previously described and tested for remediation) has been investigated for its antibacterial activity in view of further surgery and drug delivery applications. Finally, its photocatalytic properties have been experimentally tested in the degradation of a model pollutant, i.e., Methyl Orange (MO), under solar-simulated light. Identifying the best recycling strategy for these materials requires an accurate knowledge of their physicochemical properties. The results show that both the antimicrobial activity and the photocatalytic performance may considerably improve after thermal annealing.
2023
Layered double hydroxides (LDHs) play a fundamental role in the processes for the abatement of pollutants in water, with reference to heavy metal decontamination. The research on the topic is multiobjective target oriented, aiming at combining environmental remediation with the possibility of reusing a sorbent as many times as possible, turning it into a renewable resource. In this study, the antibacterial and catalytic properties of a ZnAl-SO4 LDH and its resulting product after being subjected to a Cr(VI) remediation process are compared. Both solid substrates have also been tested after undergoing a thermal annealing process. The sorbent (previously described and tested for remediation) has been investigated for its antibacterial activity in view of further surgery and drug delivery applications. Finally, its photocatalytic properties have been experimentally tested in the degradation of a model pollutant, i.e., Methyl Orange (MO), under solar-simulated light. Identifying the best recycling strategy for these materials requires an accurate knowledge of their physicochemical properties. The results show that both the antimicrobial activity and the photocatalytic performance may considerably improve after thermal annealing.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1117715
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact