Background: We aimed to test whether the prognostic value of 18 F‐Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography (FDG-PET/CT) in metastatic castration-resistant prostate cancer (mCRPC) extends to the estimation of systemic treatment response duration. Methods: mCRPC patients submitted to FDG-PET/CT in four Italian centers from 2005 to 2020 were retrospectively enrolled. Clinical and biochemical data at the time of imaging were collected, and SUV max of the hottest lesion, total metabolic tumor volume (MTV), and total lesion glycolysis (TLG) were calculated. The correlation between PET- and biochemical-derived parameters with Overall Survival (OS) was analysed. The prediction of treatment response duration was assessed in the subgroup submitted to FDG-PET/CT in the six months preceding Chemotherapy (namely Docetaxel or Cabazitaxel, 24 patients) or Androgen-Receptor Targeted Agents (ARTA, namely Abiraterone or Enzalutamide, 20 patients) administration. Results: We enrolled 114 mCRPC patients followed-up for a median interval lasting 15 months. While at univariate analysis, prostate-specific antigen (PSA), Alkaline Phosphatase (ALP), MTV, and TLG were associated with OS, at the multivariate Cox regression analysis, the sole MTV could independently predict OS (p < 0.0001). In the subgroup submitted to FDG-PET/CT before the systemic treatment initiation, PSA and TLG could also predict treatment response duration independently (p < 0.05). Of note, while PSA could not indicate the best treatment choice, lower TLG was associated with higher success rates for ARTA but had no impact on chemotherapy efficacy. Conclusions: FDG-PET/CT’s prognostic value extends to predicting treatment response duration in mCRPC, thus potentially guiding the systemic treatment selection.
The prognostic power of 18F-FDG PET/CT extends to estimating systemic treatment response duration in metastatic castration-resistant prostate cancer (mCRPC) patients
Bauckneht M.;Donegani M. I.;Miceli A.;Fornarini G.;Sambuceti G.;Morbelli S.;
2021-01-01
Abstract
Background: We aimed to test whether the prognostic value of 18 F‐Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography (FDG-PET/CT) in metastatic castration-resistant prostate cancer (mCRPC) extends to the estimation of systemic treatment response duration. Methods: mCRPC patients submitted to FDG-PET/CT in four Italian centers from 2005 to 2020 were retrospectively enrolled. Clinical and biochemical data at the time of imaging were collected, and SUV max of the hottest lesion, total metabolic tumor volume (MTV), and total lesion glycolysis (TLG) were calculated. The correlation between PET- and biochemical-derived parameters with Overall Survival (OS) was analysed. The prediction of treatment response duration was assessed in the subgroup submitted to FDG-PET/CT in the six months preceding Chemotherapy (namely Docetaxel or Cabazitaxel, 24 patients) or Androgen-Receptor Targeted Agents (ARTA, namely Abiraterone or Enzalutamide, 20 patients) administration. Results: We enrolled 114 mCRPC patients followed-up for a median interval lasting 15 months. While at univariate analysis, prostate-specific antigen (PSA), Alkaline Phosphatase (ALP), MTV, and TLG were associated with OS, at the multivariate Cox regression analysis, the sole MTV could independently predict OS (p < 0.0001). In the subgroup submitted to FDG-PET/CT before the systemic treatment initiation, PSA and TLG could also predict treatment response duration independently (p < 0.05). Of note, while PSA could not indicate the best treatment choice, lower TLG was associated with higher success rates for ARTA but had no impact on chemotherapy efficacy. Conclusions: FDG-PET/CT’s prognostic value extends to predicting treatment response duration in mCRPC, thus potentially guiding the systemic treatment selection.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.