We extend the notion of Frobenius Betti numbers to large classes of finitely generated modules over rings of prime characteristic, which are not assumed to be local. To do so, we introduce new invariants, which we call Frobenius Euler characteristics. We prove uniform convergence and upper semicontinuity results for Frobenius Betti numbers and Euler characteristics. These invariants detect the singularities of a ring, extending two results from the local to the global setting.

Global Frobenius Betti Numbers and Frobenius Euler Characteristics

De Stefani A.;
2022-01-01

Abstract

We extend the notion of Frobenius Betti numbers to large classes of finitely generated modules over rings of prime characteristic, which are not assumed to be local. To do so, we introduce new invariants, which we call Frobenius Euler characteristics. We prove uniform convergence and upper semicontinuity results for Frobenius Betti numbers and Euler characteristics. These invariants detect the singularities of a ring, extending two results from the local to the global setting.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1113477
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact