We investigate mapping properties of non-centered Hardy–Littlewood maximal operators related to the exponential measure dμ(x) = exp (- | x1| - ⋯ - | xd|) dx in Rd. The mean values are taken over Euclidean balls or cubes (ℓ∞ balls) or diamonds (ℓ1 balls). Assuming that d≥ 2 , in the cases of cubes and diamonds we prove the Lp-boundedness for p> 1 and disprove the weak type (1, 1) estimate. The same is proved in the case of Euclidean balls, under the restriction d≤ 4 for the positive part.

On non-centered maximal operators related to a non-doubling and non-radial exponential measure

Nowak A.;Sasso E.;Sjogren P.;
2023-01-01

Abstract

We investigate mapping properties of non-centered Hardy–Littlewood maximal operators related to the exponential measure dμ(x) = exp (- | x1| - ⋯ - | xd|) dx in Rd. The mean values are taken over Euclidean balls or cubes (ℓ∞ balls) or diamonds (ℓ1 balls). Assuming that d≥ 2 , in the cases of cubes and diamonds we prove the Lp-boundedness for p> 1 and disprove the weak type (1, 1) estimate. The same is proved in the case of Euclidean balls, under the restriction d≤ 4 for the positive part.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1110755
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact