We study some properties of a family of rings R(I)_{a,b} that are obtained as quotients of the Rees algebra associated with a ring R and an ideal I. In particular, we give a complete description of the spectrum of every member of the family and describe the localizations at a prime ideal. Consequently, we are able to characterize the Cohen–Macaulay and Gorenstein properties, generalizing known results stated in the local case. Moreover, we study when R(I)_{a,b} is an integral domain, reduced, quasi-Gorenstein, or satisfies Serre’s conditions.
New algebraic properties of quadratic quotients of the Rees algebra
Strazzanti F
2019-01-01
Abstract
We study some properties of a family of rings R(I)_{a,b} that are obtained as quotients of the Rees algebra associated with a ring R and an ideal I. In particular, we give a complete description of the spectrum of every member of the family and describe the localizations at a prime ideal. Consequently, we are able to characterize the Cohen–Macaulay and Gorenstein properties, generalizing known results stated in the local case. Moreover, we study when R(I)_{a,b} is an integral domain, reduced, quasi-Gorenstein, or satisfies Serre’s conditions.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.