We present secml, an open-source Python library for secure and explainable machine learning. It implements the most popular attacks against machine learning, including test-time evasion attacks to generate adversarial examples against deep neural networks and training-time poisoning attacks against support vector machines and many other algorithms. These attacks enable evaluating the security of learning algorithms and the corresponding defenses under both white-box and black-box threat models. To this end, secml provides built-in functions to compute security evaluation curves, showing how quickly classification performance decreases against increasing adversarial perturbations of the input data. secml also includes explainability methods to help understand why adversarial attacks succeed against a given model, by visualizing the most influential features and training prototypes contributing to each decision. It is distributed under the Apache License 2.0 and hosted at https://github.com/pralab/secml.

secml: Secure and explainable machine learning in Python

Demetrio L.;Biggio B.
2022-01-01

Abstract

We present secml, an open-source Python library for secure and explainable machine learning. It implements the most popular attacks against machine learning, including test-time evasion attacks to generate adversarial examples against deep neural networks and training-time poisoning attacks against support vector machines and many other algorithms. These attacks enable evaluating the security of learning algorithms and the corresponding defenses under both white-box and black-box threat models. To this end, secml provides built-in functions to compute security evaluation curves, showing how quickly classification performance decreases against increasing adversarial perturbations of the input data. secml also includes explainability methods to help understand why adversarial attacks succeed against a given model, by visualizing the most influential features and training prototypes contributing to each decision. It is distributed under the Apache License 2.0 and hosted at https://github.com/pralab/secml.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1110097
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 3
social impact