In the present work, the evolution of the boundary layer over a low-pressure turbine blade is studied using direct numerical simulations, with the aim of investigating the unsteady flow field induced by the rotor-stator interaction. The freestream flow is characterized by the high level of freestream turbulence and periodically impinging wakes. As in the experiments, the wakes are shed by moving bars modeling the rotor blades and placed upstream of the turbine blades. To include the presence of the wake without employing an ad-hoc model, we simulate both the moving bars and the stationary blades in their respective frames of reference and the coupling of the two domains is done through appropriate boundary conditions. The presence of the wake mainly affects the development of the boundary layer on the suction side of the blade. In particular, the flow separation in the rear part of the blade is suppressed. Moreover, the presence of the wake introduces alternating regions in the streamwise direction of high- and low-velocity fluctuations inside the boundary layer. These fluctuations are responsible for significant variations of the shear stress. The analysis of the velocity fields allows the characterization of the streaky structures forced in the boundary layer by turbulence carried by upstream wakes. The breakdown events are observed once positive streamwise velocity fluctuations reach the end of the blade. Both the fluctuations induced by the migration of the wake in the blade passage and the presence of the streaks contribute to high values of the disturbance velocity inside the boundary layer with respect to a steady inflow case. The amplification of the boundary layer disturbances associated with different spanwise wavenumbers has been computed. It was found that the migration of the wake in the blade passage stands for the most part of the perturbations with zero spanwise wavenumber. The non-zero wavenumbers are found to be amplified in the rear part of the blade at the boundary between the lowand high-speed regions associated with the wakes. [DOI: 10.1115/1.4056108]

Effects of Upstream Wakes on the Boundary Layer Over a Low-Pressure Turbine Blade

Lengani D.;Simoni D.;Pralits J.;
2023-01-01

Abstract

In the present work, the evolution of the boundary layer over a low-pressure turbine blade is studied using direct numerical simulations, with the aim of investigating the unsteady flow field induced by the rotor-stator interaction. The freestream flow is characterized by the high level of freestream turbulence and periodically impinging wakes. As in the experiments, the wakes are shed by moving bars modeling the rotor blades and placed upstream of the turbine blades. To include the presence of the wake without employing an ad-hoc model, we simulate both the moving bars and the stationary blades in their respective frames of reference and the coupling of the two domains is done through appropriate boundary conditions. The presence of the wake mainly affects the development of the boundary layer on the suction side of the blade. In particular, the flow separation in the rear part of the blade is suppressed. Moreover, the presence of the wake introduces alternating regions in the streamwise direction of high- and low-velocity fluctuations inside the boundary layer. These fluctuations are responsible for significant variations of the shear stress. The analysis of the velocity fields allows the characterization of the streaky structures forced in the boundary layer by turbulence carried by upstream wakes. The breakdown events are observed once positive streamwise velocity fluctuations reach the end of the blade. Both the fluctuations induced by the migration of the wake in the blade passage and the presence of the streaks contribute to high values of the disturbance velocity inside the boundary layer with respect to a steady inflow case. The amplification of the boundary layer disturbances associated with different spanwise wavenumbers has been computed. It was found that the migration of the wake in the blade passage stands for the most part of the perturbations with zero spanwise wavenumber. The non-zero wavenumbers are found to be amplified in the rear part of the blade at the boundary between the lowand high-speed regions associated with the wakes. [DOI: 10.1115/1.4056108]
File in questo prodotto:
File Dimensione Formato  
JTM-Vincentis-etal-2023.pdf

accesso aperto

Descrizione: Articolo su rivista
Tipologia: Documento in Post-print
Dimensione 1.23 MB
Formato Adobe PDF
1.23 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1108855
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact