The semi-periodic vortex-shedding phenomenon caused by flow separation at the windward corners of a rectangular cylinder would result in significant vortex-induced vibrations (VIVs). Based on the aeroelastic experiment of a rectangular cylinder with side ratio of 1.5:1, 2-dimensional (2D) and 2.5-dimensional (2.5D) numerical simulations of the VIV of a rectangular cylinder were comprehensively validated. The mechanism of VIV of the rectangular cylinder was in detail discussed in terms of vortex-induced forces, aeroelastic response, work analysis, aerodynamic damping ratio and flow visualization. The outcomes showed that the numerical results of aeroelastic displacement in the cross-wind direction and the vortex-shedding procedure around the rectangular cylinder were in general consistence with the experimental results by 2.5D numerical simulation. In both simulations, the phase difference between the lift and displacement response increased with the reduced wind speed and the vortex-induced resonance (VIR) disappeared at the phase difference of approximately 180(circle). The work done by lift force shows a close relationship with vibration amplitudes at different reduced wind speeds. In 2.5D simulations, the lift force of the rectangular cylinder under different wind speeds would be affected by the presence of small-scale vortices in the turbulence flow field. Similarly, the phase difference between lift force and displacement response was not a constant with the same upstream wind speed. Aerodynamic damping identified from the VIV was mainly dependent on the reduced wind speed and negative damping ratios were revealed at the lock-in regime, which also greatly influenced the probability density function (PDF) of wind-induced displacement.

2D and 2.5D Numerical Simulations for Vortex-Induced Vibration (VIV) of a 1.5:1 Rectangular Cylinder

Piccardo G.
2022-01-01

Abstract

The semi-periodic vortex-shedding phenomenon caused by flow separation at the windward corners of a rectangular cylinder would result in significant vortex-induced vibrations (VIVs). Based on the aeroelastic experiment of a rectangular cylinder with side ratio of 1.5:1, 2-dimensional (2D) and 2.5-dimensional (2.5D) numerical simulations of the VIV of a rectangular cylinder were comprehensively validated. The mechanism of VIV of the rectangular cylinder was in detail discussed in terms of vortex-induced forces, aeroelastic response, work analysis, aerodynamic damping ratio and flow visualization. The outcomes showed that the numerical results of aeroelastic displacement in the cross-wind direction and the vortex-shedding procedure around the rectangular cylinder were in general consistence with the experimental results by 2.5D numerical simulation. In both simulations, the phase difference between the lift and displacement response increased with the reduced wind speed and the vortex-induced resonance (VIR) disappeared at the phase difference of approximately 180(circle). The work done by lift force shows a close relationship with vibration amplitudes at different reduced wind speeds. In 2.5D simulations, the lift force of the rectangular cylinder under different wind speeds would be affected by the presence of small-scale vortices in the turbulence flow field. Similarly, the phase difference between lift force and displacement response was not a constant with the same upstream wind speed. Aerodynamic damping identified from the VIV was mainly dependent on the reduced wind speed and negative damping ratios were revealed at the lock-in regime, which also greatly influenced the probability density function (PDF) of wind-induced displacement.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1108776
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact