Multiresolution terrain models describe a topographic surface at various levels of resolution. Besides providing a data compression mechanism for dense topographic data, such models enable us to analyze and visualize surfaces at a variable resolution. This paper provides a critical survey of multiresolution terrain models. Formal definitions of hierarchical and pyramidal models are presented. Multiresolution models proposed in the literature (namely, surface quadtree, restricted quadtree, quaternary triangulation, ternary triangulation, adaptive hierarchical triangulation, hierarchical Delaunay triangulation, and Delaunay pyramid) are described and discussed within such frameworks. Construction algorithms for all such models are given, together with an analysis of their time and space complexities.
Multiresolution models for topographic surface description
De Floriani L.;Puppo E.
1996-01-01
Abstract
Multiresolution terrain models describe a topographic surface at various levels of resolution. Besides providing a data compression mechanism for dense topographic data, such models enable us to analyze and visualize surfaces at a variable resolution. This paper provides a critical survey of multiresolution terrain models. Formal definitions of hierarchical and pyramidal models are presented. Multiresolution models proposed in the literature (namely, surface quadtree, restricted quadtree, quaternary triangulation, ternary triangulation, adaptive hierarchical triangulation, hierarchical Delaunay triangulation, and Delaunay pyramid) are described and discussed within such frameworks. Construction algorithms for all such models are given, together with an analysis of their time and space complexities.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.