Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPARγ:Peroxisome proliferator-activated receptor, NFκB: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2α:Elongation initiation factor 2α). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT1R axis (AT1R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity.
There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPARγ:Peroxisome proliferator-activated receptor, NFκB: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2α:Elongation initiation factor 2α). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT1R axis (AT1R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity.
Nrf2-interacting nutrients and COVID-19: time for research to develop adaptation strategies
Bousquet J.;Cristol J. -P.;Czarlewski W.;Anto J. M.;Martineau A.;Haahtela T.;Fonseca S. C.;Iaccarino G.;Blain H.;Fiocchi A.;Canonica G. W.;Fonseca J. A.;Vidal A.;Choi H. -J.;Kim H. J.;Le Moing V.;Reynes J.;Sheikh A.;Akdis C. A.;Zuberbier T.;Abdul Latiff A. H.;Abdullah B.;Aberer W.;Abusada N.;Adcock I.;Afani A.;Agache I.;Aggelidis X.;Agustin J.;Akdis M.;Al-Ahmad M.;Al-Zahab Bassam A.;Alburdan H.;Aldrey-Palacios O.;Alvarez Cuesta E.;Alwan Salman H.;Alzaabi A.;Amade S.;Ambrocio G.;Angles R.;Annesi-Maesano I.;Ansotegui I. J.;Ara Bardajo P.;Arasi S.;Arrais M.;Arshad H.;Artesani M. -C.;Asayag E.;Avolio F.;Azhari K.;Bachert C.;Bagnasco D.;Baiardini I.;Bajrovic N.;Bakakos P.;Bakeyala Mongono S.;Balotro-Torres C.;Barba S.;Barbara C.;Barbosa E.;Barreto B.;Bartra J.;Basagana X.;Bateman E. D.;Battur L.;Bedbrook A.;Bedolla Barajas M.;Beghe B.;Bekere A.;Bel E.;Ben Kheder A.;Benson M.;Berghea E. -C.;Bergmann K. -C.;Bernardini R.;Bernstein D.;Bewick M.;Bialek S.;Bialoszewski A.;Bieber T.;Billo N. E.;Bilo M. -B.;Bindslev-Jensen C.;Bjermer L.;Blain H.;Bobolea I.;Bochenska Marciniak M.;Bond C.;Boner A.;Bonini M.;Bonini S.;Bosnic-Anticevich S.;Bosse I.;Botskariova S.;Bouchard J.;Boulet L. -P.;Bourret R.;Bousquet P.;Braido F.;Briggs A.;Brightling C. E.;Brozek J.;Brussino L.;Buhl R.;Bumbacea R.;Buquicchio R.;Burguete Cabanas M. -T.;Bush A.;Busse W. W.;Buters J.;Caballero-Fonseca F.;Calderon M. A.;Calvo M.;Camargos P.;Camuzat T.;Canevari F. R. M.;Cano A.;Canonican G. W.;Capriles-Hulett A.;Caraballo L.;Cardona V.;Carlsen K. -H.;Carmona Pirez J.;Caro J.;Carr W.;Carreiro-Martins P.;Carreon-Asuncion F.;Carriazo A. -M.;CarrionyRibas C.;Casale T.;Castor M. -A.;Castro E.;Caviglia A. G.;Cecchi L.;Cepeda Sarabia A.;Chalubinski M.;Chandrasekharan R.;Chang Y. -S.;Chato-Andeza V.;Chatzi L.;Chatzidaki C.;Chavannes N. H.;Chaves Loureiro C.;Chavez Garcia A. -A.;Chelninska M.;Chen Y.;Cheng L.;Chinthrajah S.;Chivato T.;Chkhartishvili E.;Christoff G.;Chrystyn H.;Chu D. K.;Chua A.;Chuchalin A.;Chung K. F.;Ciceran A.;Cingi C.;Ciprandi G.;Cirule I.;Coelho A. -C.;Compalati E.;Constantinidis J.;Correia de Sousa J.;Costa E. M.;Costa D.;del Carmen Costa Dominguez M.;Coste A.;Cottini M.;Cox L.;Crisci C.;Crivellaro M. A.;Cruz A. A.;Cullen J.;Custovic A.;Cvetkovski B.;Czarlewski W.;D'Amato G.;da Silva J.;Dahl R.;Dahlen S. -E.;Daniilidis V.;Darjazini Nahhas L.;Darsow U.;Davies J.;de Blay F.;De Feo G.;De Guia E.;De la Torre Navarrete J. -R.;De los Santos C.;De Manuel Keenoy E.;De Vries G.;Deleanu D.;Demoly P.;Denburg J.;Devillier P.;Didier A.;Dimic Janjic S.;Dimou M.;Dinh-Xuan A. T.;Djukanovic R.;Do Ceu Texeira M.;Dokic D.;Dominguez Silva M. G.;Douagui H.;Douladiris N.;Doulaptsi M.;Dray G.;Dubakiene R.;Dupas E.;Durham S.;Duse M.;Dykewicz M.;Ebo D.;Edelbaher N.;Eiwegger T.;Eklund P.;El-Gamal Y.;El-Sayed Z. A.;El-Sayed S. S.;El-Seify M.;Emuzyte R.;Enecilla L.;Erhola M.;Espinoza H.;Espinoza Contreras J. G.;Farrell J.;Fernandez L.;Fimbres Jimenez P.;Fink Wagner A.;Fiocchi A.;Fokkens W. J.;Folletti L.;Fonseca J. A.;Fontaine J. -F.;Forastiere F.;Fuentes Perez J. M.;Gaerlan-Resureccion E.;Gaga M.;Galvez Romero J. L.;Gamkrelidze A.;Garcia A.;Garcia Cobas C. Y.;de la Luz Hortensia Garcia Cruz M.;Ortiz V. G.;Gayraud J.;Gelardi M.;Gemicioglu B.;Gennimata D.;Genova S.;Gereda J.;Gerth van Wijk R.;Giuliano A.;Gomez R. -M.;Gonzalez Ballester M. -A.;Gonzalez Diaz S.;Gotua M.;Grigoreas C.;Grisle I.;Guidacci M.;Guldemond N.;Gutter Z.;Guzman A.;Haahtela T.;Halloum R.;Halpin D.;Hamelmann E.;Hammadi S.;Harvey R.;Heffler E.;Heinrich J.;Hejjaoui A.;Hellquist-Dahl B.;Hernandez Velazquez L.;Hew M.;Hossny E.;Howarth P.;Hrubisko M.;Huerta Villalobos Y. R.;Humbert M.;Husain S.;Hyland M.;Ibrahim M.;Ilina N.;Illario M.;Incorvaia C.;Infantino A.;Irani C.;Ispayeva Z.;Ivancevich J. C.;Jares E. E.;Jarvis D.;Jassem E.;Jenko K.;Jimeneracruz Uscanga R. D.;Johnston S. L.;Joos G.;Jost M.;Julge K.;Jung K. -S.;Just J.;Jutel M.;Kaidashev I.;Kalayci O.;Kalyoncu F.;Kapsali J.;Kardas P.;Karjalainen J.;Kasala C. A.;Katotomichelakis M.;Kavaliukaite L.;Bennoor K. S.;Keil T.;Keith P.;Khaitov M.;Khaltaev N.;Kim Y. -Y.;Kirenga B.;Kleine-Tebbe J.;Klimek L.;Ko F. W.;Koffi N'Goran B.;Kompoti E.;Kopac P.;Koppelman G.;Koren Jeverica A.;Koskinen S.;Kosnik M.;Kostka T.;Kostov K. V.;Kowalski M. L.;Kralimarkova T.;Kramer Vrscaj K.;Kraxner H.;Kreft S.;Kritikos V.;Kudlay D.;Kuitunen M.;Kull I.;Kuna P.;Kupczyk M.;Kvedariene V.;Kyriakakou M.;Lalek N.;Landi M.;Lane S.;Larenas-Linnemann D. E.;Lau S.;Laune D.;Lavrut J.;Le L.;Lenzenhuber M.;Leo G.;Lessa M.;Levin M.;Li J.;Lieberman P.;Liotta G.;Lipworth B.;Liu X.;Lobo R.;Lodrup Carlsen K. C.;Lombardi C.;Louis R.;Loukidis S.;Lourenco O.;Luna Pech J. A.;Madjar B.;Maggi E.;Magnan A.;Mahboub B.;Mair A.;Maitland van der Zee A. -H.;Makela M.;Makris M.;Malling H. -J.;Mandajieva M.;Manning P.;Manousakis M.;Maragoudakis P.;Marseglia G.;Marshall G.;Masjedi M. R.;Maspero J. F.;Matta Campos J. J.;Maurer M.;Mavale-Manuel S.;Meco C.;Melen E.;Melioli G.;Melo-Gomes E.;Meltzer E. O.;Menditto E.;Menzies-Gow A.;Merk H.;Michel J. -P.;Micheli Y.;Miculinic N.;Midao L.;Mihaltan F.;Mikos N.;Milanese M.;Milenkovic B.;Mitsias D.;Moalla B.;Moda G.;Mogica Martinez M. D.;Mohammad Y.;Moharra F. -M.;Moin M.;Molimard M.;Momas I.;Mommers M.;Monaco A.;Montefort S.;Montenegro L. -E.;Monti R.;Mora D.;Morais-Almeida M.;Mosges R.;Mostafa B. E.;Mullol J.;Munter L.;Muraro A.;Murray R.;Musarra A.;Mustakov T.;Naclerio R.;Nadeau K. C.;Nadif R.;Nakonechna A.;Namazova-Baranova L.;Navarro-Locsin G.;Neffen H.;Nekam K.;Neou A.;Nettis E.;Neuberger D.;Nicod L.;Nicola S.;Niederberger-Leppin V.;Niedoszytko M.;Nieto A.;Novellino E.;Nunes E.;Nyembue D.;O'Hehir R. E.;Odjakova C.;Ohta K.;Okamoto Y.;Okubo K.;Oliver B.;Onorato G. L.;Orru M. P.;Ouedraogo S.;Ouoba K.;Padilla F. -J.;Paggiaro P. L.;Pagkalos A.;Pajno G.;Pala G.;Palaniappan S.;Pali-Scholl I.;Palkonen S.;Palmer S.;Panaitescu Bunu C.;Panzner P.;Papadopoulos N. G.;Papanikolaou V.;Papi A.;Paralchev B.;Paraskevopoulos G.;Park H. -S.;Passalacqua G.;Patella V.;Pavord I.;Pawankar R.;Pedersen S.;Peleve S.;Pellegino S.;Pereira A.;Pereira M.;Perez T.;Perna A.;Peroni D.;Pfaar O.;Pham-Thi N.;Pigearias B.;Pin I.;Piskou K.;Pitsios C.;Plavec D.;Poethig D.;Pohl W.;Poplas Susic A.;Popov T. A.;Portejoie F.;Potter P.;Poulsen L.;Prados-Torres A.;Prarros F.;Price D.;Prokopakis E.;Puggioni F.;Puig-Domenech E.;Puy R.;Rabe K.;Rabotti S.;Raciborski F.;Ramos J.;Recalcati C.;Recto M. T.;Reda S. M.;Regateiro F. S.;Reider N.;Reitsma S.;Repka-Ramirez S.;Ridolo E.;Rimmer J.;Rivero Yeverino D.;Rizzo J. A.;Robalo-Cordeiro C.;Roberts G.;Robles K.;Roche N.;Rodriguez Gonzalez M.;Rodriguez Zagal E.;Rolla G.;Rolland C.;Roller-Wirnsberger R.;Roman Rodriguez M.;Romano A.;Romantowski J.;Rombaux P.;Romualdez J.;Rosado-Pinto J.;Rosario N.;Rosenwasser L.;Rossi O.;Rottem M.;Rouadi P. W.;Rovina N.;Rozman Sinur I.;Ruiz M.;Ruiz Segura L. T.;Ryan D.;Sagara H.;Sakai D.;Sakurai D.;Saleh W.;Salimaki J.;Samitas K.;Samolinski B.;Sanchez Coronel M. G.;Sanchez-Borges M.;Sanchez-Lopez J.;Sansonna M.;Sarafoleanu C.;Sarquis Serpa F.;Sastre J.;Savi E.;Savonyte A.;Sawaf B.;Scadding G. K.;Scheire S.;Schmid-Grendelmeier P.;Schuhl J. F.;Schunemann H.;Schvalbova M.;Schwarze J.;Scichilone N.;Senna G.;Sepulveda C.;Serrano E.;Shamai S.;Sheikh A.;Shields M.;Shishkov V.;Siafakas N.;Simeonov A.;Simons E. F.;Sisul J. C.;Sitkauskiene B.;Skrindo I.;Soklic Kosak T.;Sole D.;Sondermann M.;Sooronbaev T.;Soto-Martinez M.;Soto-Quiros M.;Pinto B. S.;Sova M.;Soyka M.;Specjalski K.;Sperl A.;Spranger O.;Stamataki S.;Stefanaki L.;Stellato C.;Stelmach R.;Strandberg T.;Stute P.;Subramaniam A.;Suppli Ulrik C.;Sutherland M.;Sylvestre S.;Syrigou A.;Taborda Barata L.;Takovska N.;Tan R.;Tan F.;Tan V.;Tang I. P.;Taniguchi M.;Tannert L.;Tantilipikorn P.;Tattersall J.;Tesi F.;Thieme U.;Thijs C.;Thomas M.;To T.;Todo-Bom A. M.;Togias A.;Tomazic P. -V.;Tomic-Spiric V.;Toppila-Salmi S.;Torres Jaen M. -J.;Toskala E.;Triggiani M.;Triller N.;Triller K.;Tsiligianni I.;Uberti M.;Ulmeanu R.;Urbancic J.;Urrutia Pereira M.;Vachova M.;Valdes F.;Valenta R.;Valentin Rostan M.;Valero A.;Valiulis A.;Vallianatou M.;Valovirta E.;Van Eerd M.;Van Ganse E.;van Hage M.;Vandenplas O.;Vasankari T.;Vassileva D.;Velasco Munoz C.;Ventura M. T.;Vera-Munoz C.;Viart F.;Vicheva D.;Vichyanond P.;Vidgren P.;Viegi G.;Vogelmeier C.;Von Hertzen L.;Vontetsianos T.;Vourdas D.;Tran Thien Quan V.;Wagenmann M.;Walker S.;Wallace D.;De Wang Y.;Waserman S.;Wehner K.;Wickman M.;Williams S.;Williams D.;Wilson N.;Wong G.;Woo K.;Wozniak L.;Wright J.;Wroczynski P.;Xepapadaki P.;Yakovliev P.;Yamaguchi M.;Yan K.;Yap Y. Y.;Yassin M.;Yawn B.;Yiallouros P.;Yorgancioglu A.;Yoshihara S.;Young I.;Yusuf O. B.;Zaidi A.;Zaitoun F.;Zalud P.;Zar H.;Zedda M. T.;Zernotti M. E.;Zhang L.;Zhong N.;Zidarn M.;Zuberbier T.
2020-01-01
Abstract
There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPARγ:Peroxisome proliferator-activated receptor, NFκB: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2α:Elongation initiation factor 2α). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT1R axis (AT1R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity.
There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPARγ:Peroxisome proliferator-activated receptor, NFκB: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2α:Elongation initiation factor 2α). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT1R axis (AT1R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1106197
Citazioni
39
59
58
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.