We present a validation of the Dark Energy Survey Year 3 (DES Y3) 3×2-point analysis choices by testing them on Buzzard2.0, a new suite of cosmological simulations that is tailored for the testing and validation of combined galaxy clustering and weak-lensing analyses. We show that the buzzard2.0 simulations accurately reproduce many important aspects of the DES Y3 data, including photometric redshift and magnitude distributions, and the relevant set of two-point clustering and weak-lensing statistics. We then show that our model for the 3×2-point data vector is accurate enough to recover the true cosmology in simulated surveys assuming the true redshift distributions for our source and lens samples, demonstrating robustness to uncertainties in the modeling of the nonlinear matter power spectrum, nonlinear galaxy bias, and higher-order lensing corrections. Additionally, we demonstrate for the first time that our photometric redshift calibration methodology, including information from photometry, spectroscopy, clustering cross-correlations, and galaxy-galaxy lensing ratios, is accurate enough to recover the true cosmology in simulated surveys in the presence of realistic photometric redshift uncertainties.

Dark Energy Survey Year 3 results: Cosmology from combined galaxy clustering and lensing validation on cosmological simulations

Raveri M.;
2022-01-01

Abstract

We present a validation of the Dark Energy Survey Year 3 (DES Y3) 3×2-point analysis choices by testing them on Buzzard2.0, a new suite of cosmological simulations that is tailored for the testing and validation of combined galaxy clustering and weak-lensing analyses. We show that the buzzard2.0 simulations accurately reproduce many important aspects of the DES Y3 data, including photometric redshift and magnitude distributions, and the relevant set of two-point clustering and weak-lensing statistics. We then show that our model for the 3×2-point data vector is accurate enough to recover the true cosmology in simulated surveys assuming the true redshift distributions for our source and lens samples, demonstrating robustness to uncertainties in the modeling of the nonlinear matter power spectrum, nonlinear galaxy bias, and higher-order lensing corrections. Additionally, we demonstrate for the first time that our photometric redshift calibration methodology, including information from photometry, spectroscopy, clustering cross-correlations, and galaxy-galaxy lensing ratios, is accurate enough to recover the true cosmology in simulated surveys in the presence of realistic photometric redshift uncertainties.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1104531
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 23
social impact