The FSV method is a recognized validation tool that initially assesses the similarity between data sets for electromagnetic measurements and models. Its use may be extended to many problems and applications, and in particular, with relation to electrical systems, but it should be characterized in terms of its uncertainty, as for measurement tools. To this aim, the Guide to the Expression of Uncertainty in Measurement (GUM) is applied for the propagation of uncertainty from the experimental data to the Feature Selective Validation (FSV) quantities, using Monte Carlo analysis as confirmation, which ultimately remains the most reliable approach to determine the propagation of uncertainty, given the significant FSV non-linearity. Such non-linearity in fact compromises the accuracy of the Taylor approximation supporting the use of first-order derivatives (and derivative terms in general). MCM results are instead more stable and show sensitivity vs. input data uncertainty in the order of 10 to 100, highly depending on the local data samples value. To this aim, normalized sensitivity coefficients are also reported, in an attempt to attenuate the scale effects, redistributing the observed sensitivity values that, however, remain in the said range, up to about 100.
Uncertainty and Sensitivity of the Feature Selective Validation (FSV) Method
Bongiorno, J;Mariscotti, A
2022-01-01
Abstract
The FSV method is a recognized validation tool that initially assesses the similarity between data sets for electromagnetic measurements and models. Its use may be extended to many problems and applications, and in particular, with relation to electrical systems, but it should be characterized in terms of its uncertainty, as for measurement tools. To this aim, the Guide to the Expression of Uncertainty in Measurement (GUM) is applied for the propagation of uncertainty from the experimental data to the Feature Selective Validation (FSV) quantities, using Monte Carlo analysis as confirmation, which ultimately remains the most reliable approach to determine the propagation of uncertainty, given the significant FSV non-linearity. Such non-linearity in fact compromises the accuracy of the Taylor approximation supporting the use of first-order derivatives (and derivative terms in general). MCM results are instead more stable and show sensitivity vs. input data uncertainty in the order of 10 to 100, highly depending on the local data samples value. To this aim, normalized sensitivity coefficients are also reported, in an attempt to attenuate the scale effects, redistributing the observed sensitivity values that, however, remain in the said range, up to about 100.File | Dimensione | Formato | |
---|---|---|---|
MDPI_electronics-11-02532_FSV-Uncertainty_2022.pdf
accesso aperto
Descrizione: Articolo su rivista
Tipologia:
Documento in versione editoriale
Dimensione
7.59 MB
Formato
Adobe PDF
|
7.59 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.