Magneto-electro-elastic (MEE) materials are attracting an increasing amount of scientific interest in physics, for their valuable potential in the functional management of mechanical-to-magnetoelectric energy conversions. The present paper focuses on heterogeneous MEE media – artfully realized by virtue of the periodic repetition of a multi-phase elementary cell – which represent promising solutions to passively control the propagation of multifield Bloch waves. Specifically, the linear continuum model governing the coupled free dynamics of a cellular non-dissipative MEE material is formulated for the unbounded three-dimensional domain. Then, the governing equations are specialized for a periodic layered waveguide with perfect inter-layer interfaces. The Floquet–Bloch decomposition is employed to analytically determine the uni-modular transfer matrix of the heterogeneous multi-layered cell. The related eigenproblem, governed by a palindromic characteristic polynomial in the Floquet multipliers, is solved in closed form to analyze the dispersion properties in the real-valued frequency domain and complex-valued wavenumber domain. Alternatively, a perturbation scheme is outlined to asymptotically approximate the exact eigensolutions. The dispersion spectra, composed of propagation and attenuation branches, are parametrically investigated for a two-layered periodic waveguide. The corresponding band structures are assessable a priori by leveraging the formal analogy with the stability analysis for non-autonomous dynamical systems. As main findings, slow-propagating quasi-shear-elastic waves and fast-propagating quasi-magneto-electric waves are found to dominate the low-frequency and high-frequency ranges, respectively, although some crossing points between the respective spectral branches can be detected. Quantitatively different but qualitatively similar behaviors of propagation and/or attenuation are observed for the quasi-shear-elastic waves and quasi-magneto-electric waves. Consequently, pass–pass, pass–stop and stop–stop bands of frequencies can be recognized and tuned by varying the key physical parameters. This rich spectral scenario opens the way for the functional customization of MEE-based metafilters or metapropagators, purposely designed to govern the transfer, localization, conversion, harvesting of energy across large frequency ranges.

Dispersive waves in magneto-electro-elastic periodic waveguides

Bacigalupo, Andrea;Lepidi, Marco;Mazzino, Andrea
2022-01-01

Abstract

Magneto-electro-elastic (MEE) materials are attracting an increasing amount of scientific interest in physics, for their valuable potential in the functional management of mechanical-to-magnetoelectric energy conversions. The present paper focuses on heterogeneous MEE media – artfully realized by virtue of the periodic repetition of a multi-phase elementary cell – which represent promising solutions to passively control the propagation of multifield Bloch waves. Specifically, the linear continuum model governing the coupled free dynamics of a cellular non-dissipative MEE material is formulated for the unbounded three-dimensional domain. Then, the governing equations are specialized for a periodic layered waveguide with perfect inter-layer interfaces. The Floquet–Bloch decomposition is employed to analytically determine the uni-modular transfer matrix of the heterogeneous multi-layered cell. The related eigenproblem, governed by a palindromic characteristic polynomial in the Floquet multipliers, is solved in closed form to analyze the dispersion properties in the real-valued frequency domain and complex-valued wavenumber domain. Alternatively, a perturbation scheme is outlined to asymptotically approximate the exact eigensolutions. The dispersion spectra, composed of propagation and attenuation branches, are parametrically investigated for a two-layered periodic waveguide. The corresponding band structures are assessable a priori by leveraging the formal analogy with the stability analysis for non-autonomous dynamical systems. As main findings, slow-propagating quasi-shear-elastic waves and fast-propagating quasi-magneto-electric waves are found to dominate the low-frequency and high-frequency ranges, respectively, although some crossing points between the respective spectral branches can be detected. Quantitatively different but qualitatively similar behaviors of propagation and/or attenuation are observed for the quasi-shear-elastic waves and quasi-magneto-electric waves. Consequently, pass–pass, pass–stop and stop–stop bands of frequencies can be recognized and tuned by varying the key physical parameters. This rich spectral scenario opens the way for the functional customization of MEE-based metafilters or metapropagators, purposely designed to govern the transfer, localization, conversion, harvesting of energy across large frequency ranges.
File in questo prodotto:
File Dimensione Formato  
1460 - Int. J. Mechanical Sciences 236 2022 id.107759.pdf

accesso chiuso

Descrizione: Int. J. Mechanical Sciences 236 2022 id.107759
Tipologia: Documento in versione editoriale
Dimensione 5.68 MB
Formato Adobe PDF
5.68 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1102478
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact