Purpose: The measure of companies' Innovation Performance is fundamental for enhancing the value and decision-making processes of firms. The purpose of this paper is to present a new measure of Innovation Performance, called Innovation Patent Index (IPI), which makes it possible to quantitatively summarize different aspects of firms' innovation. Design/methodology/approach: In order to define the IPI, a secondary source, i.e. patent data, has been used. The five dimensions of IPI, i.e. efficiency, time, diversification, quality and internationalization have been defined both analyzing the literature and applying three different machine learning algorithms (regularized least squares, deep neural networks and decision trees), considering patent forward citations as a proxy of the innovation performance. Findings: Results show that the IPI index is a very useful tool, simple to use and very promptly. In fact, it is possible to get important results without making time consuming analysis with primary sources. It is a tool that can be used by managers, businessmen, policymakers, organizations, patent experts and financiers to evaluate and plan future activities, to enhance the innovation capability, to find financing and to support and improve innovation. Research limitations/implications: Patent data are not widely used in all the sectors. Moreover, the pure number of forward citations is not the only forward looking indicator suggested by the literature. Originality/value: The demand for a useable Innovation Performance tool, as well as the lack of tools able to grasp different aspects of the innovation, highlight the need to develop new instruments. In fact, although previous studies provide several measures of Innovation Performance, these are often difficult for managers to use, do not appreciate different aspects of the innovation and are not forward looking.
A measure of innovation performance: the Innovation Patent Index
Ponta L.;
2021-01-01
Abstract
Purpose: The measure of companies' Innovation Performance is fundamental for enhancing the value and decision-making processes of firms. The purpose of this paper is to present a new measure of Innovation Performance, called Innovation Patent Index (IPI), which makes it possible to quantitatively summarize different aspects of firms' innovation. Design/methodology/approach: In order to define the IPI, a secondary source, i.e. patent data, has been used. The five dimensions of IPI, i.e. efficiency, time, diversification, quality and internationalization have been defined both analyzing the literature and applying three different machine learning algorithms (regularized least squares, deep neural networks and decision trees), considering patent forward citations as a proxy of the innovation performance. Findings: Results show that the IPI index is a very useful tool, simple to use and very promptly. In fact, it is possible to get important results without making time consuming analysis with primary sources. It is a tool that can be used by managers, businessmen, policymakers, organizations, patent experts and financiers to evaluate and plan future activities, to enhance the innovation capability, to find financing and to support and improve innovation. Research limitations/implications: Patent data are not widely used in all the sectors. Moreover, the pure number of forward citations is not the only forward looking indicator suggested by the literature. Originality/value: The demand for a useable Innovation Performance tool, as well as the lack of tools able to grasp different aspects of the innovation, highlight the need to develop new instruments. In fact, although previous studies provide several measures of Innovation Performance, these are often difficult for managers to use, do not appreciate different aspects of the innovation and are not forward looking.File | Dimensione | Formato | |
---|---|---|---|
Ponta21_MD.pdf
accesso aperto
Descrizione: Articolo su rivista
Tipologia:
Documento in versione editoriale
Dimensione
1.08 MB
Formato
Adobe PDF
|
1.08 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.