The experimental realization of twisted bilayer graphene strongly pushed the inspection of bilayer systems. In this context, it was recently shown that a two layer Haldane model with a thirty degree rotation angle between the layers represents a higher order topological insulator, with zero-dimensional states isolated in energy and localized at the physical vertices of the nanostructure. We show, within a numerical tight binding approach, that the energy of the zero dimensional states strongly depends on the geometrical structure of the vertices. In the most extreme cases, once a specific band gap is considered, these bound states can even disappear just by changing the vertex structure.

Effects of the Vertices on the Topological Bound States in a Quasicrystalline Topological Insulator

Traverso, S;Traverso Ziani N;Sassetti, M
2022-01-01

Abstract

The experimental realization of twisted bilayer graphene strongly pushed the inspection of bilayer systems. In this context, it was recently shown that a two layer Haldane model with a thirty degree rotation angle between the layers represents a higher order topological insulator, with zero-dimensional states isolated in energy and localized at the physical vertices of the nanostructure. We show, within a numerical tight binding approach, that the energy of the zero dimensional states strongly depends on the geometrical structure of the vertices. In the most extreme cases, once a specific band gap is considered, these bound states can even disappear just by changing the vertex structure.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1100234
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact