The experimental realization of twisted bilayer graphene strongly pushed the inspection of bilayer systems. In this context, it was recently shown that a two layer Haldane model with a thirty degree rotation angle between the layers represents a higher order topological insulator, with zero-dimensional states isolated in energy and localized at the physical vertices of the nanostructure. We show, within a numerical tight binding approach, that the energy of the zero dimensional states strongly depends on the geometrical structure of the vertices. In the most extreme cases, once a specific band gap is considered, these bound states can even disappear just by changing the vertex structure.
Effects of the Vertices on the Topological Bound States in a Quasicrystalline Topological Insulator
Traverso, S;Traverso Ziani N;Sassetti, M
2022-01-01
Abstract
The experimental realization of twisted bilayer graphene strongly pushed the inspection of bilayer systems. In this context, it was recently shown that a two layer Haldane model with a thirty degree rotation angle between the layers represents a higher order topological insulator, with zero-dimensional states isolated in energy and localized at the physical vertices of the nanostructure. We show, within a numerical tight binding approach, that the energy of the zero dimensional states strongly depends on the geometrical structure of the vertices. In the most extreme cases, once a specific band gap is considered, these bound states can even disappear just by changing the vertex structure.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.