Doped semiconductor nanocrystal-based thin films are widely used for many applications, such as screens, electrochromic windows, light emitting diodes, and solar cells. Herein, we have employed spectroscopic ellipsometry to measure and model the complex dielectric response of indium tin oxide films fabricated by nanocrystal deposition and sintering. The films could be modelled as Bruggemann effective media, allowing estimation of the nanoscale interstitial porosity of the structure. The effective dielectric constants show the possibility of tuning the plasma frequency and the epsilon-near zero condition of the film.

Effective medium optical modelling of indium tin oxide nanocrystal films

Maria Sygletou;Maurizio Canepa;Francesco Bisio
2022-01-01

Abstract

Doped semiconductor nanocrystal-based thin films are widely used for many applications, such as screens, electrochromic windows, light emitting diodes, and solar cells. Herein, we have employed spectroscopic ellipsometry to measure and model the complex dielectric response of indium tin oxide films fabricated by nanocrystal deposition and sintering. The films could be modelled as Bruggemann effective media, allowing estimation of the nanoscale interstitial porosity of the structure. The effective dielectric constants show the possibility of tuning the plasma frequency and the epsilon-near zero condition of the film.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1099775
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact