Robotic surgery is a set of techniques and technologies used to plan, move, and perform surgery, exploiting the capabilities of robots to overcome human limitations in minimally invasive operations. The use of robots guided by augmented reality has allowed surgeons to improve vision and precision during surgery. Despite the results achieved over the years, there is still a high clinical demand for improvements, which can only be reached using intelligent physical or virtual tools. The present work aims to develop a virtual prototype of robotized bone milling operations, when there is the need to virtually predict operative performance. The proposed model leverages the active connection between Simulink, the well-known numerical tool, and RecurDyn, a commercial CAE solver. In particular, the model parametrization and the simulation process are managed from Matlab, whereas the mechanical system is solved in RecurDyn. After a proper validation of the simulation framework with data taken from the literature, a set of parametric studies has been carried out to investigate the influence of the input parameters on the cutting process.

Modeling of Cutting Operations for Robotic Surgery Using CAE Tools

Pitzalis R. F.;Berselli G.
2022-01-01

Abstract

Robotic surgery is a set of techniques and technologies used to plan, move, and perform surgery, exploiting the capabilities of robots to overcome human limitations in minimally invasive operations. The use of robots guided by augmented reality has allowed surgeons to improve vision and precision during surgery. Despite the results achieved over the years, there is still a high clinical demand for improvements, which can only be reached using intelligent physical or virtual tools. The present work aims to develop a virtual prototype of robotized bone milling operations, when there is the need to virtually predict operative performance. The proposed model leverages the active connection between Simulink, the well-known numerical tool, and RecurDyn, a commercial CAE solver. In particular, the model parametrization and the simulation process are managed from Matlab, whereas the mechanical system is solved in RecurDyn. After a proper validation of the simulation framework with data taken from the literature, a set of parametric studies has been carried out to investigate the influence of the input parameters on the cutting process.
978-3-031-15927-5
978-3-031-15928-2
File in questo prodotto:
File Dimensione Formato  
C2022_4.pdf

accesso chiuso

Descrizione: Contributo in volume
Tipologia: Documento in Post-print
Dimensione 3.77 MB
Formato Adobe PDF
3.77 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1099136
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact