A covalent adaptable network based on the thermoreversible cross-linking of an ethylene-propylene rubber through Diels-Alder (DA) reaction was prepared for the first time through melt blending as an environmental-friendly alternative to traditional synthesis in organic solvents. Functionalization of the rubber with furan groups was performed in a melt blender and subsequently mixed with different amounts of bismaleimide in a microextruder. Cross-linking was confirmed by FT-IR spectroscopy and insolubility at room temperature, while its thermoreversible character was confirmed by a solubility test at 110 °C and by remolding via hot-pressing. Mechanical and thermomechanical properties of the obtained rubbers showed potential to compete with conventionally cross-linked elastomers, with stiffness in the range 1-1.7 MPa and strain at break in the range 200-500%, while allowing recycling via a simple melt processing step. Nanocomposites based on the thermoreversible rubber were prepared with reduced graphene oxide (rGO), showing significantly increasing stiffness up to ca. 8 MPa, ∼2-fold increased strength, and thermal conductivity up to ∼0.5 W/(m K). Results in this paper may open for industrially viable and sustainable applications of thermoreversible elastomers.
Thermoreversible Cross-Linked Rubber Prepared via Melt Blending and Its Nanocomposites
Damonte G.;Monticelli O.;
2022-01-01
Abstract
A covalent adaptable network based on the thermoreversible cross-linking of an ethylene-propylene rubber through Diels-Alder (DA) reaction was prepared for the first time through melt blending as an environmental-friendly alternative to traditional synthesis in organic solvents. Functionalization of the rubber with furan groups was performed in a melt blender and subsequently mixed with different amounts of bismaleimide in a microextruder. Cross-linking was confirmed by FT-IR spectroscopy and insolubility at room temperature, while its thermoreversible character was confirmed by a solubility test at 110 °C and by remolding via hot-pressing. Mechanical and thermomechanical properties of the obtained rubbers showed potential to compete with conventionally cross-linked elastomers, with stiffness in the range 1-1.7 MPa and strain at break in the range 200-500%, while allowing recycling via a simple melt processing step. Nanocomposites based on the thermoreversible rubber were prepared with reduced graphene oxide (rGO), showing significantly increasing stiffness up to ca. 8 MPa, ∼2-fold increased strength, and thermal conductivity up to ∼0.5 W/(m K). Results in this paper may open for industrially viable and sustainable applications of thermoreversible elastomers.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.