Plants need a specific environment to grow and reproduce in fine fettle. Nevertheless, climatic conditions are not stable and can impact their well-being and, consequently, harvest qual-ity. Thus, greenhouse cultivation is one of the suitable agricultural techniques for creating and con-trolling the inside microclimate to be adequate for plant growth. The relevance of greenhouse control is widely recognized. The prediction of greenhouse variables using artificial intelligence methods is of great interest for intelligent control and the potential reduction in energetic and financial losses. However, the studies carried out in this context are still more or less limited and several machine learning methods have not been sufficiently exploited. The aim of this study is to predict the air conditioning electrical consumption and photovoltaic module electrical production at the smart Agro-Manufacturing Laboratory (SamLab) greenhouse, located in Albenga, north-western Italy. Different supervised machine learning methods were compared, namely, Artificial Neural Networks (ANNs), Gaussian Process Regression (GPR), Support Vector Machine (SVM) and Boosting trees. We evaluated the performance of the models based on three statistical indicators: the coefficient of correlation (R), the normalized root mean square error (nRMSE) and the normalized mean absolute error (nMAE). The results show good agreement between the measured and pre-dicted values for all models, with a correlation coefficient R > 0.9, considering the validation set. The good performance of the models affirms the importance of this approach and that it can be used to further improve greenhouse efficiency through its intelligent control.

Evaluation of supervised learning models in predicting greenhouse energy demand and production for intelligent and sustainable operations

Marco Fossa;Antonella Priarone;
2021-01-01

Abstract

Plants need a specific environment to grow and reproduce in fine fettle. Nevertheless, climatic conditions are not stable and can impact their well-being and, consequently, harvest qual-ity. Thus, greenhouse cultivation is one of the suitable agricultural techniques for creating and con-trolling the inside microclimate to be adequate for plant growth. The relevance of greenhouse control is widely recognized. The prediction of greenhouse variables using artificial intelligence methods is of great interest for intelligent control and the potential reduction in energetic and financial losses. However, the studies carried out in this context are still more or less limited and several machine learning methods have not been sufficiently exploited. The aim of this study is to predict the air conditioning electrical consumption and photovoltaic module electrical production at the smart Agro-Manufacturing Laboratory (SamLab) greenhouse, located in Albenga, north-western Italy. Different supervised machine learning methods were compared, namely, Artificial Neural Networks (ANNs), Gaussian Process Regression (GPR), Support Vector Machine (SVM) and Boosting trees. We evaluated the performance of the models based on three statistical indicators: the coefficient of correlation (R), the normalized root mean square error (nRMSE) and the normalized mean absolute error (nMAE). The results show good agreement between the measured and pre-dicted values for all models, with a correlation coefficient R > 0.9, considering the validation set. The good performance of the models affirms the importance of this approach and that it can be used to further improve greenhouse efficiency through its intelligent control.
File in questo prodotto:
File Dimensione Formato  
Energies 2021b.pdf

accesso aperto

Descrizione: Articolo su rivista
Tipologia: Documento in versione editoriale
Dimensione 3.95 MB
Formato Adobe PDF
3.95 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1096974
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact