Vehicle-to-Everything (V2X) is an emergent technology for enhancing traffic efficiency, road safety and autonomous driving. Vehicles interconnected with their prevalent wireless environment are prone to various security threats that might affect traffic and life safety mmensely. Jamming attacks, a legacy and dated problem, still persists much to the havoc of V2X communications. The following paper proposes a framework for jammer detection adapted to V2X communications scenario. A Generalized Dynamic Bayesian network is used to learn the V2X signal environment in a statistical manner. Subsequently, a Modified Markov Jump Particle filter (M-MJPF) is used for signal predictions where the innovations in the observed signal versus the predicted signal enable our framework to detect the jammer. Simulation results highlight the efficacy and accuracy of our approach in V2X jammer detection.

Jammer Detection in Vehicular V2X Networks

Krayani A.;Marcenaro L.;Regazzoni C.
2022-01-01

Abstract

Vehicle-to-Everything (V2X) is an emergent technology for enhancing traffic efficiency, road safety and autonomous driving. Vehicles interconnected with their prevalent wireless environment are prone to various security threats that might affect traffic and life safety mmensely. Jamming attacks, a legacy and dated problem, still persists much to the havoc of V2X communications. The following paper proposes a framework for jammer detection adapted to V2X communications scenario. A Generalized Dynamic Bayesian network is used to learn the V2X signal environment in a statistical manner. Subsequently, a Modified Markov Jump Particle filter (M-MJPF) is used for signal predictions where the innovations in the observed signal versus the predicted signal enable our framework to detect the jammer. Simulation results highlight the efficacy and accuracy of our approach in V2X jammer detection.
File in questo prodotto:
File Dimensione Formato  
2022068673.pdf

accesso aperto

Descrizione: Contributo in atti di convegno
Tipologia: Documento in Post-print
Dimensione 776.76 kB
Formato Adobe PDF
776.76 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1094796
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact