Let γ- 1 be the absolutely continuous measure on Rn whose density is the reciprocal of a Gaussian and consider the weighted symmetric Laplacian A on L2(γ- 1). We prove boundedness and unboundedness results for the purely imaginary powers and the first order Riesz transforms of A+ λI, λ≥ 0 , from new Hardy spaces adapted to γ- 1 to L1(γ- 1). We also investigate their weak type (1, 1).

Singular Integrals and Hardy Type Spaces for the Inverse Gauss Measure

Bruno T.
2021-01-01

Abstract

Let γ- 1 be the absolutely continuous measure on Rn whose density is the reciprocal of a Gaussian and consider the weighted symmetric Laplacian A on L2(γ- 1). We prove boundedness and unboundedness results for the purely imaginary powers and the first order Riesz transforms of A+ λI, λ≥ 0 , from new Hardy spaces adapted to γ- 1 to L1(γ- 1). We also investigate their weak type (1, 1).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1092881
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact