We review recent literature that proposes to adapt ideas from classical model based optimal design of experiments to problems of data selection of large datasets. Special attention is given to bias reduction and to protection against confounders. Some new results are presented. Theoretical and computational comparisons are made.

Large datasets, bias and model‐oriented optimal design of experiments

Porro Francesco;Riccomagno Eva
2023-01-01

Abstract

We review recent literature that proposes to adapt ideas from classical model based optimal design of experiments to problems of data selection of large datasets. Special attention is given to bias reduction and to protection against confounders. Some new results are presented. Theoretical and computational comparisons are made.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1091678
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact