Polysaccharide-based composites embedding silver nanoparticles (AgNPs) represent a promising alternative to common antimicrobial materials because of the effective, broad-spectrum biocidal properties of AgNPs combined with the biocompatibility and environmental safety of the naturally occurring polymeric component. In this work, AgNPs stabilized with alginate chains (Alg@AgNPs) were successfully synthesized in situ within the polysaccharide solution through a wet chemical approach carried out at different concentrations of the silver salt precursor. Once obtained, the aqueous suspensions were electrospun to prepare non-woven membranes, showing a homogeneous nanostructured texture (with fiber diameter between 100 and 150 nm), which was found to be influenced by the size (between 20 and 35 nm) of the embedded metal nanoparticles. The biocidal potential of the nanocomposite mats was preliminarily tested against Gram-negative E. coli. The results showed that the antimicrobial response of the investigated samples occurred within a day of incubation and can be observed for AgNPs content in the polysaccharide fibers far below the nanomolar regime

Electrospun alginate mats embedding silver nanoparticles with bioactive properties

Alloisio M.;Dodero A.;Alberti S.;Vicini S.;Castellano M.
2022

Abstract

Polysaccharide-based composites embedding silver nanoparticles (AgNPs) represent a promising alternative to common antimicrobial materials because of the effective, broad-spectrum biocidal properties of AgNPs combined with the biocompatibility and environmental safety of the naturally occurring polymeric component. In this work, AgNPs stabilized with alginate chains (Alg@AgNPs) were successfully synthesized in situ within the polysaccharide solution through a wet chemical approach carried out at different concentrations of the silver salt precursor. Once obtained, the aqueous suspensions were electrospun to prepare non-woven membranes, showing a homogeneous nanostructured texture (with fiber diameter between 100 and 150 nm), which was found to be influenced by the size (between 20 and 35 nm) of the embedded metal nanoparticles. The biocidal potential of the nanocomposite mats was preliminarily tested against Gram-negative E. coli. The results showed that the antimicrobial response of the investigated samples occurred within a day of incubation and can be observed for AgNPs content in the polysaccharide fibers far below the nanomolar regime
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11567/1089402
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact