We present new fingerprint classification algorithms based on two machine teaming approaches: support vector machines (SVMs) and recursive neural networks (RNNs). RNNs are trained on a structured representation of the fingerprint image. They are also used to extract a set of distributed features of the fingerprint which can be integrated in the SVM. SVMs are combined with a new error-correcting code scheme. This approach has two main advantages: (a) It can tolerate the presence of ambiguous fingerprint images in the training set and (b) it can effectively identify the most difficult fingerprint images in the test set. By rejecting these images the accuracy of the system improves significantly. We report experiments on the fingerprint database NIST-4. Our best classification accuracy is of 95.6 percent at 20 percent rejection rate and is obtained by training SVMs on both FingerCode and RNN-extracted features. This result indicates the benefit of integrating global and structured representations and suggests that SVMs are a promising approach for fingerprint classification. (C) 2002 Published by Elsevier Science Ltd on behalf of Pattern Recognition Society.

Combining flat and structured representations for fingerprint classification with recursive neural networks and support vector machines

ROLI, FABIO
2003-01-01

Abstract

We present new fingerprint classification algorithms based on two machine teaming approaches: support vector machines (SVMs) and recursive neural networks (RNNs). RNNs are trained on a structured representation of the fingerprint image. They are also used to extract a set of distributed features of the fingerprint which can be integrated in the SVM. SVMs are combined with a new error-correcting code scheme. This approach has two main advantages: (a) It can tolerate the presence of ambiguous fingerprint images in the training set and (b) it can effectively identify the most difficult fingerprint images in the test set. By rejecting these images the accuracy of the system improves significantly. We report experiments on the fingerprint database NIST-4. Our best classification accuracy is of 95.6 percent at 20 percent rejection rate and is obtained by training SVMs on both FingerCode and RNN-extracted features. This result indicates the benefit of integrating global and structured representations and suggests that SVMs are a promising approach for fingerprint classification. (C) 2002 Published by Elsevier Science Ltd on behalf of Pattern Recognition Society.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1088758
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 86
  • ???jsp.display-item.citation.isi??? 69
social impact