A photocatalytic microreactor is defined as a microfluidic device, which is integrated with a photocatalytic coating of TiO2 deposited on the inner surface of microchannels. This device is capable of degradation of organic dye solution in water in a continuous flow under the action of ultraviolet light. The objectives of this work were to present a rapid and economically viable approach for the prototyping photocatalytic microfluidic devices and to evaluate their photodegradation capability for organic dyes by ultravioletvisible spectrophotometry. Prototyping of polydimethylsiloxane PDMS/TiO2/glass microreactors includes several procedures such as mold preparation, microchannel confection on PDMS surface, deposition of TiO2 on these microchannels, O-2 plasma treatment of PDMS/TiO2 and glass surface for sealing these two parts. The efficiency of the photocatalytic microreactors was evaluated by fluxing two organic dye solutions, rhodamine B and methylene blue, with different flow rates of between 2 and 4 mL h(-1). When the flow rate at 2 mL h(-1) was applied, discoloration of similar to 65% was achieved for both dye solutions, while PDMS/glass microchannels, without TiO2 film, demonstrated much lower discoloration of between 24 and 42% for rhodamine B and methylene blue, respectively. This confirmed that TiO2 was successfully deposited onto PDMS microchannels.
PROTOTYPING OF PHOTOCATALYTIC MICROREACTOR AND TESTING OF PHOTODEGRADATION OF ORGANIC DYE
Ginoble Pandoli O;
2015-01-01
Abstract
A photocatalytic microreactor is defined as a microfluidic device, which is integrated with a photocatalytic coating of TiO2 deposited on the inner surface of microchannels. This device is capable of degradation of organic dye solution in water in a continuous flow under the action of ultraviolet light. The objectives of this work were to present a rapid and economically viable approach for the prototyping photocatalytic microfluidic devices and to evaluate their photodegradation capability for organic dyes by ultravioletvisible spectrophotometry. Prototyping of polydimethylsiloxane PDMS/TiO2/glass microreactors includes several procedures such as mold preparation, microchannel confection on PDMS surface, deposition of TiO2 on these microchannels, O-2 plasma treatment of PDMS/TiO2 and glass surface for sealing these two parts. The efficiency of the photocatalytic microreactors was evaluated by fluxing two organic dye solutions, rhodamine B and methylene blue, with different flow rates of between 2 and 4 mL h(-1). When the flow rate at 2 mL h(-1) was applied, discoloration of similar to 65% was achieved for both dye solutions, while PDMS/glass microchannels, without TiO2 film, demonstrated much lower discoloration of between 24 and 42% for rhodamine B and methylene blue, respectively. This confirmed that TiO2 was successfully deposited onto PDMS microchannels.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.