It is widely reported that N-(4-hydroxyphenyl)-retinamide or fenretinide (4-HPR), which is a synthetic amide of all-trans-retinoic acid (ATRA), inhibits in vitro several types of tumors, including cancer cell lines resistant to ATRA, at 1–10 µM concentrations. Additionally, studies in rats and mice have confirmed the potent anticancer effects of 4-HPR, without evidencing hemolytic toxicity, thus demonstrating its suitability for the development of a new chemo-preventive agent. To this end, the accurate determination of 4-HPR levels in tissues is essential for its pre-clinical training, and for the correct determination of 4-HPR and its metabolites by chromatography, N-(4-ethoxyphenyl)-retinamide (4-EPR) has been suggested as an indispensable internal standard. Unfortunately, only a consultable old patent reports the synthesis of 4-EPR, starting from dangerous and high-cost reagents and using long and tedious purification procedures. To the best of our knowledge, no article existed so far describing the specific synthesis of 4-EPR. Only two vendors worldwide supply 4-ERP, and its characterization was incomplete. Here, a scalable, operator-friendly, and one-step procedure to synthetize highly pure 4-EPR without purification work-up and in quantitative yield is reported. Additionally, a complete characterization of 4-EPR using all possible analytical techniques has been provided.

One-Step, Low-Cost, Operator-Friendly, and Scalable Procedure to Synthetize Highly Pure N-(4-ethoxyphenyl)-retinamide in Quantitative Yield without Purification Work-Up

Alfei, Silvana;Zuccari, Guendalina
2022-01-01

Abstract

It is widely reported that N-(4-hydroxyphenyl)-retinamide or fenretinide (4-HPR), which is a synthetic amide of all-trans-retinoic acid (ATRA), inhibits in vitro several types of tumors, including cancer cell lines resistant to ATRA, at 1–10 µM concentrations. Additionally, studies in rats and mice have confirmed the potent anticancer effects of 4-HPR, without evidencing hemolytic toxicity, thus demonstrating its suitability for the development of a new chemo-preventive agent. To this end, the accurate determination of 4-HPR levels in tissues is essential for its pre-clinical training, and for the correct determination of 4-HPR and its metabolites by chromatography, N-(4-ethoxyphenyl)-retinamide (4-EPR) has been suggested as an indispensable internal standard. Unfortunately, only a consultable old patent reports the synthesis of 4-EPR, starting from dangerous and high-cost reagents and using long and tedious purification procedures. To the best of our knowledge, no article existed so far describing the specific synthesis of 4-EPR. Only two vendors worldwide supply 4-ERP, and its characterization was incomplete. Here, a scalable, operator-friendly, and one-step procedure to synthetize highly pure 4-EPR without purification work-up and in quantitative yield is reported. Additionally, a complete characterization of 4-EPR using all possible analytical techniques has been provided.
File in questo prodotto:
File Dimensione Formato  
molecules-27-03632 (1).pdf

accesso aperto

Descrizione: Articolo Completo
Tipologia: Documento in versione editoriale
Dimensione 2.3 MB
Formato Adobe PDF
2.3 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1087706
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact