We port classical straightedge and compass constructions to manifold surfaces under the geodesic metric. We propose two complementary approaches: one working on the tangent plane; and another working directly on the surface. In both cases, many constructions lack some of the geometric properties they have in the Euclidean case. We devise alternative constructions that guarantee at least a subset of such properties. We integrate our constructions in the context of a prototype system supporting the interactive drawing of primitives of vector graphics.

Vector graphics on surfaces using straightedge and compass constructions

Mancinelli C.;Puppo E.
2022

Abstract

We port classical straightedge and compass constructions to manifold surfaces under the geodesic metric. We propose two complementary approaches: one working on the tangent plane; and another working directly on the surface. In both cases, many constructions lack some of the geometric properties they have in the Euclidean case. We devise alternative constructions that guarantee at least a subset of such properties. We integrate our constructions in the context of a prototype system supporting the interactive drawing of primitives of vector graphics.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11567/1087411
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact