In noncommutative geometry, Connes's spectral distance is an extended metric on the state space of a C∗-algebra generalizing Kantorovich's dual formula of the Wasserstein distance of order 1 from optimal transport. It is expressed as a supremum. We present a dual formula – as an infimum – generalizing Beckmann's “dual of the dual” formulation of the Wasserstein distance. We then discuss some examples with matrix algebras, where such a dual formula may be useful to obtain upper bounds for the distance.

A dual formula for the spectral distance in noncommutative geometry

D'Andrea F.;Martinetti P.
2021-01-01

Abstract

In noncommutative geometry, Connes's spectral distance is an extended metric on the state space of a C∗-algebra generalizing Kantorovich's dual formula of the Wasserstein distance of order 1 from optimal transport. It is expressed as a supremum. We present a dual formula – as an infimum – generalizing Beckmann's “dual of the dual” formulation of the Wasserstein distance. We then discuss some examples with matrix algebras, where such a dual formula may be useful to obtain upper bounds for the distance.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1086782
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact