Adverse cardiovascular disease (CVD) outcomes, such as sudden cardiac death, acute myocardial infarction, and stroke, are often catastrophic. Statins are frequently used to attenuate the risk of CVD-associated morbidity and mortality through their impact on lipids and they may also have anti-inflammatory and other plaque-stabilization effects via different signaling pathways. Different statins, including atorvastatin, rosuvastatin, pravastatin, pitavastatin, and simvastatin, are administered to manage circulatory lipid levels. In addition, statins are potent inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMGCoA) reductase via modulating sirtuins (SIRTs). During the last two decades, SIRTs have been investigated in mammals and categorized as a family of nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylases (HDACs) with significant oxidative stress regulatory function in cells-a key factor in extending cell lifespan. Recent work has demonstrated that statins upregulate SIRT1 and SIRT2 and downregulate SIRT6 in both in vitro and in vivo experiments and clinical trials. As statins show modulatory properties, especially in CVDs, future investigations are needed to delineate the role of SIRT family members in disease and to expand knowledge about the effects of statins on SIRTs. Here, we review what is currently known about the impact of statins on SIRTs and how these changes correlate with disease, particularly CVDs.

Regulatory Effects of Statins on SIRT1 and Other Sirtuins in Cardiovascular Diseases

Montecucco, Fabrizio;
2022-01-01

Abstract

Adverse cardiovascular disease (CVD) outcomes, such as sudden cardiac death, acute myocardial infarction, and stroke, are often catastrophic. Statins are frequently used to attenuate the risk of CVD-associated morbidity and mortality through their impact on lipids and they may also have anti-inflammatory and other plaque-stabilization effects via different signaling pathways. Different statins, including atorvastatin, rosuvastatin, pravastatin, pitavastatin, and simvastatin, are administered to manage circulatory lipid levels. In addition, statins are potent inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMGCoA) reductase via modulating sirtuins (SIRTs). During the last two decades, SIRTs have been investigated in mammals and categorized as a family of nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylases (HDACs) with significant oxidative stress regulatory function in cells-a key factor in extending cell lifespan. Recent work has demonstrated that statins upregulate SIRT1 and SIRT2 and downregulate SIRT6 in both in vitro and in vivo experiments and clinical trials. As statins show modulatory properties, especially in CVDs, future investigations are needed to delineate the role of SIRT family members in disease and to expand knowledge about the effects of statins on SIRTs. Here, we review what is currently known about the impact of statins on SIRTs and how these changes correlate with disease, particularly CVDs.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1086191
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact