Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
The main way to produce cast iron is in the blast furnace. In the production of hot metal, the control of silicon is important. Alumina and silica react chemically with limestone and dolomite to form blast furnace slag. In this work, 12 artificial neural networks (ANNs) were modeled with different numbers of neurons in each hidden layer. The number of neurons varied between 10 and 200 neurons. ANNs were used to predict the silicon content of hot metal produced. The ANN with 30 neurons showed the best performance. In the test phase, the mathematical correlation was 97.5% and the mean square error (MSE) was 0.0006, and in the cross-validation phase, the mathematical correlation was 95.5% while the MSE was 0.00035.
Modeling of artificial neural networks for silicon prediction in the cast iron production process
Cardoso W.;di Felice R.;Dos Santos B. N.;Schitine A. N.;Machado T. A. P.;Galdino A. G. S.;Dixini P. V. M.
2022
Abstract
The main way to produce cast iron is in the blast furnace. In the production of hot metal, the control of silicon is important. Alumina and silica react chemically with limestone and dolomite to form blast furnace slag. In this work, 12 artificial neural networks (ANNs) were modeled with different numbers of neurons in each hidden layer. The number of neurons varied between 10 and 200 neurons. ANNs were used to predict the silicon content of hot metal produced. The ANN with 30 neurons showed the best performance. In the test phase, the mathematical correlation was 97.5% and the mean square error (MSE) was 0.0006, and in the cross-validation phase, the mathematical correlation was 95.5% while the MSE was 0.00035.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11567/1083476
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Citazioni
ND
0
ND
social impact
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2021-2023 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.