Emerging Contaminants (ECs) in marine waters include different classes of compounds, such as pharmaceuticals and personal care products, showing “emerging concern” related to the environment and human health. Their measurement in seawater is challenging mainly due to the low concentration levels and the possible matrix interferences. Mass spectrometry combined with chromatographic techniques represents the method of choice to study seawater ECs, due to its sensitivity and versatility. Nevertheless, these instrumental techniques have to be preceded by suitable sample collection and pre-treatment: passive sampling represents a powerful approach in this regard. The present review compiles the existing occurrence studies on passive sampling coupled to mass spectrometry for the monitoring of polar ECs in seawater and discusses the availability of calibration data that enabled quantitative estimations. A vast majority of the published studies carried out during the last two decades describe the use of integrative samplers, while applications of equilibrium samplers represent approximately 10%. The polar Chemcatcher was the first applied to marine waters, while the more sensitive Polar Organic Chemical Integrative Sampler rapidly became the most widely employed passive sampler. The organic Diffusive Gradients in Thin film technology is a recently introduced and promising device, due to its more reliable sampling rates. The best passive sampler selection for the monitoring of ECs in the marine environment as well as future research and development needs in this area are further discussed. On the instrumental side, combining passive sampling with high resolution mass spectrometry to better assess polar ECs is strongly advocated, despite the current challenges associated.

The study of polar emerging contaminants in seawater by passive sampling: A review

MacKeown H.;Benedetti B.;Di Carro M.;Magi E.
2022

Abstract

Emerging Contaminants (ECs) in marine waters include different classes of compounds, such as pharmaceuticals and personal care products, showing “emerging concern” related to the environment and human health. Their measurement in seawater is challenging mainly due to the low concentration levels and the possible matrix interferences. Mass spectrometry combined with chromatographic techniques represents the method of choice to study seawater ECs, due to its sensitivity and versatility. Nevertheless, these instrumental techniques have to be preceded by suitable sample collection and pre-treatment: passive sampling represents a powerful approach in this regard. The present review compiles the existing occurrence studies on passive sampling coupled to mass spectrometry for the monitoring of polar ECs in seawater and discusses the availability of calibration data that enabled quantitative estimations. A vast majority of the published studies carried out during the last two decades describe the use of integrative samplers, while applications of equilibrium samplers represent approximately 10%. The polar Chemcatcher was the first applied to marine waters, while the more sensitive Polar Organic Chemical Integrative Sampler rapidly became the most widely employed passive sampler. The organic Diffusive Gradients in Thin film technology is a recently introduced and promising device, due to its more reliable sampling rates. The best passive sampler selection for the monitoring of ECs in the marine environment as well as future research and development needs in this area are further discussed. On the instrumental side, combining passive sampling with high resolution mass spectrometry to better assess polar ECs is strongly advocated, despite the current challenges associated.
File in questo prodotto:
File Dimensione Formato  
proof_CHEM_134448.pdf

embargo fino al 29/03/2024

Tipologia: Documento in Post-print
Dimensione 736.39 kB
Formato Adobe PDF
736.39 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11567/1081515
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact