As amply known, ozone concentration in the coastal area of study is well relevant in connection with photochemical smog, due to high levels of solar radiation and temperature values and possible photochemical oxidation of volatile organic compounds (VOCs) in the presence of nitrogen oxides (NOx). In this paper, a framework for predicting ozone concentration in urban area is presented, relying a LightGBM algorithm for gradient boosting on decision trees. The system represents a pragmatic and scientifically credible approach to data driven modelling applied to complex and uncertain situations. The study concerns the application of data analytic standard methodologies to air quality analysis, which includes the pretreatment of data, the choice of a suitable configuration of the learning algorithm, the identification of the fitting parameters and error minimization. Training and verification data are significant statistical time-series over the past years validated from the air quality monitoring network in the urban area of Genoa (Italy). Keywords: Air quality, data driven model, machine learning, ozone, environmental quality.

A data driven model for ozone concentration prediction in a coastal urban area

Vairo T.;Fabiano B.
2020

Abstract

As amply known, ozone concentration in the coastal area of study is well relevant in connection with photochemical smog, due to high levels of solar radiation and temperature values and possible photochemical oxidation of volatile organic compounds (VOCs) in the presence of nitrogen oxides (NOx). In this paper, a framework for predicting ozone concentration in urban area is presented, relying a LightGBM algorithm for gradient boosting on decision trees. The system represents a pragmatic and scientifically credible approach to data driven modelling applied to complex and uncertain situations. The study concerns the application of data analytic standard methodologies to air quality analysis, which includes the pretreatment of data, the choice of a suitable configuration of the learning algorithm, the identification of the fitting parameters and error minimization. Training and verification data are significant statistical time-series over the past years validated from the air quality monitoring network in the urban area of Genoa (Italy). Keywords: Air quality, data driven model, machine learning, ozone, environmental quality.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11567/1078754
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact