The introduction of renewables, distributed generation, microgrids, electric vehicles, and new market actors, such as aggregators, have led to a remarkable change in the power network. To address the issues that such a profound modification implies on a modern energy system, here a new hierarchical architecture is presented. Specifically, the proposed approach considers the case of an aggregator of consumers in the balancing market, in which incentives for local users (i.e., microgrids, buildings) are considered as well as flexibility assessment for demand response, and CO2emissions. The main innovation is related to the overall architecture and to the formalization of the upper level decision problem that aims at coordinating local users in a democratic way, while, at the lower level, consumers want to track the aggregator's reference values performing demand response programs. The approach is applied to a real case study.

Optimal coordination of buildings and microgrids by an aggregator: A bi-level approach

Ferro G.;Minciardi R.;Parodi L.;Robba M.;Rossi M.
2020-01-01

Abstract

The introduction of renewables, distributed generation, microgrids, electric vehicles, and new market actors, such as aggregators, have led to a remarkable change in the power network. To address the issues that such a profound modification implies on a modern energy system, here a new hierarchical architecture is presented. Specifically, the proposed approach considers the case of an aggregator of consumers in the balancing market, in which incentives for local users (i.e., microgrids, buildings) are considered as well as flexibility assessment for demand response, and CO2emissions. The main innovation is related to the overall architecture and to the formalization of the upper level decision problem that aims at coordinating local users in a democratic way, while, at the lower level, consumers want to track the aggregator's reference values performing demand response programs. The approach is applied to a real case study.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2405896320311095-main.pdf

accesso aperto

Descrizione: Contributo in atti di convegno
Tipologia: Documento in versione editoriale
Dimensione 1.23 MB
Formato Adobe PDF
1.23 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1077712
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact