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Abstract: The introduction of renewables, distributed generation, microgrids, electric vehicles, and new 

market actors, such as aggregators, have led to a remarkable change in the power network. To address the 

issues that such a profound modification implies on a modern energy system, here a new hierarchical 

architecture is presented. Specifically, the proposed approach considers the case of an aggregator of 

consumers in the balancing market, in which incentives for local users (i.e., microgrids, buildings) are 

considered as well as flexibility assessment for demand response, and CO2 emissions. The main 

innovation is related to the overall architecture and to the formalization of the upper level decision 

problem that aims at coordinating local users in a democratic way, while,  at the lower level, consumers 

want to track the aggregator’s reference values performing demand response programs. The approach is 

applied to a real case study. 
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1. INTRODUCTION 

The power network has undergone a remarkable change in 

recent decades, due to the spread of new plants and 

equipment both at the transmission and distribution level: 

renewable sources, distributed generation, storage systems, 

microgrids, and electric vehicles (EVs) are few examples. 

The distribution grid especially can be negatively affected by 

renewables due to their unpredictability which can lead to 

decrease in power quality, in particular voltage variations 

(both slow and rapid) and undesired power flow reverse at 

the point of connection between HV networks and MV 

feeders, resulting in an unacceptable risk of unintentional 

islanding of a MV feeder. Furthermore, due to the decreasing 

share of traditional, controllable, bulk generation, the power 

margins for regulation are less and less available. The 

characteristics of the new energy system require an increase 

of the power reserve to face the sudden request of 

active/reactive injection/absorption from a Distribution 

System Operator (DSO) in order to compensate for example a 

sudden drop in the production from a photovoltaic plant. In 

this framework, demand response (DR), i.e., the possibility 

for a load to decrease the active power absorption for a given 

period, or to shift consumption from a period to another, is an 

effective and reliable strategy for the successful integration of 

renewable energy sources, handling the demand curve using 

load flexibility whenever the system requires it (Fontenot and 

Dong, 2019). A significant share of participants in DR 

programs can be represented by local users and/or prosumers, 

which, by themselves, could not participate in the energy 

market, but are allowed to do if aggregated in cluster 

managed by a third party, namely an Aggregator (Carreiro et 

al., 2017).  In general, the introduction of new regulation to 

address new needs and new actors, such as Aggregators, in 

the smart grid’s system opens new challenges for the 

development of new energy management systems, models 

and methods. In the recent literature, there are several papers 

regarding these new operational management strategies for 

the optimization and control of a distribution network in 

presence of DR aggregators (Ferro et al., 2020). However, 

there is not a consolidated framework for optimization 

problems related to aggregators and flexibility assessment 

and, specifically, on  how to schedule load reduction or 

production increase among the different customers, in order 

to achieve an overall load reduction and/or shifting. As an 

example, in (Saez-Gallego et al., 2018) the authors study the 

operation of a retailer that aggregates a group of price-

responsive loads and submits block-wise demand bids to the 

day-ahead and real-time markets, in order to consider long 

term and short-term market dynamics. The work presented in 

(Soares et al., 2017) proposes a two-stage stochastic model 

for a large-scale energy resource scheduling problem of 

aggregators, using Benders' decomposition method. In (Shao 

et al., 2018) customer aggregators are introduced to supply 

downstream demand in the most economical way. Generally, 

in the actual literature, reactive power is not considered, as 

well as methods to emulate the flexibility of users and their 

coordination through equity criteria. 

In this paper, the problem is addressed by proposing a bilevel 

hierarchical architecture where an Aggregator (AGG), i.e., 

the upper level, solves an optimization problem in order to 

define the optimal values of active and reactive power to be 

given as reference values to the lower level (represented by 
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local users (LUs), i.e., lower level). Specifically, we consider 

an AGG that has the knowledge of the distribution electrical 

grid because it is also a DSO or works in strict collaboration 

with the DSO. The AGG has already bid in the day ahead 

balancing market (i.e., that session of the market where the 

Transmission System Operator (TSO) requests for some 

power flexibility in order to deal with the variation of the 

demand) the price of energy and the amount of power to be 

reduced/increased in each time interval during the day. It is 

now necessary to coordinate the different customers, trying to 

satisfy power demand reduction and giving incentives to 

local users for the request. Moreover, in order to define active 

and reactive power exchanges with the LUs, as well as the 

incentives (that are expressed as function of active power 

reduction), it is necessary to guess (and thus to emulate) the 

demands and the behavior of LUs, knowing a limited set of 

information. The AGG aims at minimizing different terms of 

costs: incentives to be paid to LUs, fees (to be paid to the 

main grid) for not reaching market’s request, LUs 

dissatisfaction through a democratic assignment of power 

reduction. At the lower level, LUs have the objective to track 

power reference values, based om the price given by the 

AGG. Unlike the AGG, LUs have a detailed optimization 

model for the operational management of production, storage 

systems and active loads. They also provide parameters in the 

day ahead as bounds to be included in the higher-level 

optimization problem. The main contributions of the 

proposed paper are: 

 The development of an optimization-based bi-level 

architecture for a DSO/AGG for participation in the 

balancing market; 

 The statement of a multi-objective optimization problem 

for the problem of an AGG/DSO that considers a 

simplified prosumers’ model for flexibility assessment 

and has to provide set-points for the local users’ DR in a 

democratic way. 

 The inclusion of specific dynamical models for the two 

main classes of local users (polygeneration microgrids 

and smart buildings).  

 The application to a real case study. 

The structure of the paper is organized as follows: Section 2 

and 3 state the optimization problems related to LUs and the 

AGG, respectively. Section 3 presents the obtained results on 

a case study, while Section 4 reports conclusions and future 

developments. 

 

2. THE LOCAL USERS OPTIMIZATION PROBLEMS 

2.1. The microgrids optimization model 

Microgrids’ objective function aims at following the AGG 

reference values for active and reactive power while 

satisfying technical, economic and environmental constraints. 

The microgrids’ system model is similar to the one described 

in Delfino et al. (2019) except for the objective function, 

which now defines the tracking of references imposed by the 

DSO and that a constraint is imposed over a maximum cost 

to be paid (that generally is an objective function). The 

overall objective function for each microgrid j M , with M 

the set of microgrids, is given by 
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where ,j tD  and , ,M j tQ  are two decision variables 

representing active and reactive power exchange 

(respectively) between microgrid j and the main grid in time 

interval (t, t+1), t=0,…,T-1, ,j tD  and , ,M j tQ  are reference 

values (provided by the AGG, as a result of its optimization 

problem) for active and reactive power, respectively, 

exchanged with the main grid, and   is a weighting 

coefficient. 

The objective function is subject to numerous constraints, 

mainly related to the system model representation. That is:  
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local users (LUs), i.e., lower level). Specifically, we consider 

an AGG that has the knowledge of the distribution electrical 

grid because it is also a DSO or works in strict collaboration 

with the DSO. The AGG has already bid in the day ahead 

balancing market (i.e., that session of the market where the 

Transmission System Operator (TSO) requests for some 

power flexibility in order to deal with the variation of the 

demand) the price of energy and the amount of power to be 

reduced/increased in each time interval during the day. It is 

now necessary to coordinate the different customers, trying to 

satisfy power demand reduction and giving incentives to 

local users for the request. Moreover, in order to define active 

and reactive power exchanges with the LUs, as well as the 

incentives (that are expressed as function of active power 

reduction), it is necessary to guess (and thus to emulate) the 

demands and the behavior of LUs, knowing a limited set of 

information. The AGG aims at minimizing different terms of 

costs: incentives to be paid to LUs, fees (to be paid to the 

main grid) for not reaching market’s request, LUs 

dissatisfaction through a democratic assignment of power 

reduction. At the lower level, LUs have the objective to track 

power reference values, based om the price given by the 

AGG. Unlike the AGG, LUs have a detailed optimization 

model for the operational management of production, storage 

systems and active loads. They also provide parameters in the 

day ahead as bounds to be included in the higher-level 

optimization problem. The main contributions of the 

proposed paper are: 

 The development of an optimization-based bi-level 

architecture for a DSO/AGG for participation in the 

balancing market; 

 The statement of a multi-objective optimization problem 

for the problem of an AGG/DSO that considers a 

simplified prosumers’ model for flexibility assessment 

and has to provide set-points for the local users’ DR in a 

democratic way. 

 The inclusion of specific dynamical models for the two 

main classes of local users (polygeneration microgrids 

and smart buildings).  

 The application to a real case study. 

The structure of the paper is organized as follows: Section 2 

and 3 state the optimization problems related to LUs and the 

AGG, respectively. Section 3 presents the obtained results on 

a case study, while Section 4 reports conclusions and future 

developments. 

 

2. THE LOCAL USERS OPTIMIZATION PROBLEMS 

2.1. The microgrids optimization model 

Microgrids’ objective function aims at following the AGG 

reference values for active and reactive power while 

satisfying technical, economic and environmental constraints. 

The microgrids’ system model is similar to the one described 

in Delfino et al. (2019) except for the objective function, 

which now defines the tracking of references imposed by the 

DSO and that a constraint is imposed over a maximum cost 

to be paid (that generally is an objective function). The 

overall objective function for each microgrid j M , with M 

the set of microgrids, is given by 
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where ,j tD  and , ,M j tQ  are two decision variables 

representing active and reactive power exchange 

(respectively) between microgrid j and the main grid in time 

interval (t, t+1), t=0,…,T-1, ,j tD  and , ,M j tQ  are reference 

values (provided by the AGG, as a result of its optimization 

problem) for active and reactive power, respectively, 

exchanged with the main grid, and   is a weighting 

coefficient. 

The objective function is subject to numerous constraints, 

mainly related to the system model representation. That is:  
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where: , , ,el h j tP  is the power produced by microturbine h, 

jh H  (where jH  is the set of all the microturbines in 

microgrid j), in microgrid j in time interval (t, t+1), , ,RES j tP  is 

the overall renewable power production, , ,S j tP  is the power 

exchanged with the storage element, , ,veh j tP  is the power to 

the electrical vehicles, , ,AGG j tD is the known load reduction 

requested by the AGG (it corresponds to the optimal value 

found in the AGG optimization problem), , , , ,,RES j t S j tQ Q  are 

the reactive power from renewables and storage respectively 

while , ,D j tQ  is the reactive load, , , ,PE h j tP  is the primary 

energy consumed by the microturbines, , ,h j t , , ,h j t  and ,B j  

are efficiency parameters, , , ,th h j tP  is thermal power 

production, , , ,th B j tP  is the thermal power produced by boilers 

while , , ,PE B j tP  is the primary energy, , , ,th RES j tP  is the thermal 

power produced by renewable energy sources, , ,H j tD  is the 

thermal demand, ,j tSOC  is the state of charge of the storage 

system, , ,S j tP  is the power exchanged with the storage, 

2,, ,j j ja b a and jk are parameters, ,TOT jC  represents the costs 

of the microgrid, and other symbols maxa  and mina , represent 

bound parameters. Specifically, Equations (2) and (3) 

represent the active and reactive power balance. Equations 

(4) and (5) model the electrical and thermal power produced 

by microturbines as a function of the primary energy, while 

equation (6) bounds the power production from 

microturbines with respect to its rated power.  The boiler’s 

model is reported in equation (7). The thermal balance of the 

microgrid is reported in equations (8) and (9). Equations 

(10)-(13) represent the storage system as presented in 

(Delfino et al., 2019). Finally, equation (14) states that the 

costs of the microgrid should not overcome a pre-defined 

maximum value. Specifically, costs are a function of the 

decision variables and consider the costs to produce energy 

and the costs related to CO2 emissions. Costs in (14) are 

given by: 
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  
                                                               j M                (15) 

where , ,u j tC  and ,u tB  are the unit costs for energy bought and 

sold respectively,   is the length of the time interval, ,gas jC  

is the unit cost for one cubic meter of natural gas, ,j hf  and 

,j Bf are conversion factors from power produced and gas 

consumed in cogenerative power plants and boilers 

respectively, ef  is the conversion factor from power 

purchased from the grid and CO2 production, 
2COC  is the unit 

cost for kg of CO2 produced, ,e hf  and ,e Bf are conversion 

factors from the power produced and kg of CO2 generated in 

cogenerative power plants and boilers. 

2.2 The buildings optimization model 

The buildings’ optimization problem is similar to the one 

previously defined, except for the fact that the temperature 

variation in each room of the building is considered, instead 

of the thermal balance. The analysis is relevant to buildings 

equipped with heat pumps.  In this case the reactive power is 

not considered because the building is not able to control it. 

The overall decision problem is: 
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,

MAX

TOT j jC C      j B  (25) 

where 
jR  is the set of rooms in building j, j B , with B the 

set of buildings.; ,i jC  is thermal capacitance of room i in 

building j [B/K]; ,ext tT  is external temperature [K]; , , ,th ext i jR  is 

resistance between room i in building j and the external 

environment; , , ,th i j rR  is resistance between room i and room r 
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in building j; , ,i j rA  , ,i j extA  are adjacency matrices for rooms 

and external walls, respectively; , ,i j tq  is thermal power [kW] 

(unrestricted in sign) provided by heat pumps in room i in 

building j (it is important to note that , , , ,

1

I

HV j t i j t

i

q q


  ); , ,i j tT  

is temperature [K] in room i of building j at time instant t; 

,j tL  and , ,f j tD  are the load and the fixed consumption; 

, ,wash j tP  is the power necessary to feed washing machines; 

, ,

fix

wash j tP  and , ,

def

wash j tP  are the fixed and adjustable power of 

washing machines; ,ev jP  and ,

def

wash jP  are the minimum daily 

energy consumed by the electrical vehicles and washing 

machines, respectively.  

 Constraints (17) show the temperature equation in the rooms 

of the buildings, (18) are the temperature bounds. The active 

power balance is reported in (19) and a detailed description 

of the load is given by (20). Eq. (21) sets a minimum amount 

of energy given to the EVs. In (22) the power consumed by 

the washing machines is split into the fixed and the 

adjustable terms. Equation (23) sets the minimum amount of 

adjustable power consumed by the washing machines. The 

overall cost is presented in (24) and its limit in (25). The 

storage equations presented in (10-13) are used also for the 

buildings considering j B .  

3. THE AGGREGATOR OPTIMIZATION PROBLEM 

The objective function includes the following terms: incC  is 

the cost providing incentives to the LUs in order to diminish 

load and/or increase production;  DRB  is the benefit reducing 

the load for the external grid; DEAC  is a term named 

“Democratic Energy Assignment” in which the 

dissatisfaction of each LU is minimized considering the 

needs of the LUs (i.e. cost minimization) and equalizing the 

gain/costs that the LUs may have; emissionsC  is the term which 

considers the cost of the CO2 emissions. That is (Ferro et al 

2020): 
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(32) 

where A B M   is the set of the indexes associated to all 

users, , ,AGG j tC  is the cost relative to the demand reduction of 

each user, ,j ja b  and jc  are coefficients, DR t  is the power 

reduction at the grid node, tMR  is the requested power 

reduction at the grid node, ,grid tP  is the new request resulting 

from the decrease of demand, , ,grid da tP  is a parameter 

calculated on the basis of forecasting in the day ahead that 

cannot be updated, ,Market tC  is the unit cost of the power 

bought from  the main grid, ,fee tC  is a unit coefficient which 

gives a penalty on the dissatisfied demand reduction. 

Moreover, the following constraints must be considered, 

which represent the bounds for DR t and , ,AGG j tC : 

 

DRt t tMR MR                       0,..., 1t T   (33) 

min , , , , , max , , ,Market t AGG j t AGG j t Market t AGG j tC D C C D    

, 0,..., 1j A t T    

(34) 

where min max,   and  are known coefficients. 

The AGG system model for the electrical grid is represented 

by the power flow equations: 

 , , , , , , , ,( )n p t n p n t p t n p n t p tp G v v B       (35) 

 , , , , , , , ,( )n p t n p n t p t n p n t p tq B v v G        (36) 

with , ,n p N n p  (with N  set of indexes associated to the 

distribution grid nodes) where ,n pG  and ,n pB  are 

conductance and susceptance parameters for the line (n,p), 

,n tv  and ,n t  are the voltage magnitude and phase at node n, 

respectively, , ,n p tp  and , ,n p tq  active and reactive power 

flows, respectively. Then, there are equations related to the 

power balance for active and reactive power as well as 

bounds for control variables. That is 
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in building j; , ,i j rA  , ,i j extA  are adjacency matrices for rooms 

and external walls, respectively; , ,i j tq  is thermal power [kW] 

(unrestricted in sign) provided by heat pumps in room i in 

building j (it is important to note that , , , ,

1

I

HV j t i j t

i

q q


  ); , ,i j tT  

is temperature [K] in room i of building j at time instant t; 

,j tL  and , ,f j tD  are the load and the fixed consumption; 

, ,wash j tP  is the power necessary to feed washing machines; 

, ,

fix

wash j tP  and , ,

def

wash j tP  are the fixed and adjustable power of 

washing machines; ,ev jP  and ,

def

wash jP  are the minimum daily 

energy consumed by the electrical vehicles and washing 

machines, respectively.  

 Constraints (17) show the temperature equation in the rooms 

of the buildings, (18) are the temperature bounds. The active 

power balance is reported in (19) and a detailed description 

of the load is given by (20). Eq. (21) sets a minimum amount 

of energy given to the EVs. In (22) the power consumed by 

the washing machines is split into the fixed and the 

adjustable terms. Equation (23) sets the minimum amount of 

adjustable power consumed by the washing machines. The 

overall cost is presented in (24) and its limit in (25). The 

storage equations presented in (10-13) are used also for the 

buildings considering j B .  

3. THE AGGREGATOR OPTIMIZATION PROBLEM 

The objective function includes the following terms: incC  is 

the cost providing incentives to the LUs in order to diminish 

load and/or increase production;  DRB  is the benefit reducing 

the load for the external grid; DEAC  is a term named 

“Democratic Energy Assignment” in which the 

dissatisfaction of each LU is minimized considering the 

needs of the LUs (i.e. cost minimization) and equalizing the 

gain/costs that the LUs may have; emissionsC  is the term which 

considers the cost of the CO2 emissions. That is (Ferro et al 

2020): 

min inc DR DEA emissionsJ C B C C     (26) 

1

, ,

0

T

inc AGG j t

t j A

C C


 

   
(27) 

2

, , , , , ,( )AGG j t j AGG j t j AGG j t jC a D b D c    

, 0,..., 1j A t T    

(28) 

2

2

2

,

1

, , , ,

1

, , , ,

max( ,0)

j

j t e CO

j A

T

emissions PE B j t e B CO

t j M

PE h j t e h CO

j M h H

D f C

C P f C

P f C





 

 

 
  

 
 
   
 
 
  
 



 

 

 (29) 

, , ,max( ,0)t grid da t grid tDR P P       0,..., 1t T   (30) 

1

, ,

0

[ max( ,0)]
T

DR Market t t fee t t t

t

B C DR C MR DR




     
(31) 

1
2

, , , ,

0

(C C )
T

DEA AGG j t AGG k t

t j A k A
k j

C


  


   

, 0,..., 1j A t T    

(32) 

where A B M   is the set of the indexes associated to all 

users, , ,AGG j tC  is the cost relative to the demand reduction of 

each user, ,j ja b  and jc  are coefficients, DR t  is the power 

reduction at the grid node, tMR  is the requested power 

reduction at the grid node, ,grid tP  is the new request resulting 

from the decrease of demand, , ,grid da tP  is a parameter 

calculated on the basis of forecasting in the day ahead that 

cannot be updated, ,Market tC  is the unit cost of the power 

bought from  the main grid, ,fee tC  is a unit coefficient which 

gives a penalty on the dissatisfied demand reduction. 

Moreover, the following constraints must be considered, 

which represent the bounds for DR t and , ,AGG j tC : 

 

DRt t tMR MR                       0,..., 1t T   (33) 

min , , , , , max , , ,Market t AGG j t AGG j t Market t AGG j tC D C C D    

, 0,..., 1j A t T    

(34) 

where min max,   and  are known coefficients. 

The AGG system model for the electrical grid is represented 

by the power flow equations: 

 , , , , , , , ,( )n p t n p n t p t n p n t p tp G v v B       (35) 

 , , , , , , , ,( )n p t n p n t p t n p n t p tq B v v G        (36) 

with , ,n p N n p  (with N  set of indexes associated to the 

distribution grid nodes) where ,n pG  and ,n pB  are 

conductance and susceptance parameters for the line (n,p), 

,n tv  and ,n t  are the voltage magnitude and phase at node n, 

respectively, , ,n p tp  and , ,n p tq  active and reactive power 

flows, respectively. Then, there are equations related to the 

power balance for active and reactive power as well as 

bounds for control variables. That is 

, , , , 0n j j t n p t

j A p N
p n

A D P
 



   ( , ) /s d O D        

, 0,..., 1j A t T    

(37) 

, , , , 0M j t n p t

j A n N
n p

Q Q
 



          , 0,..., 1j A t T    (38) 

, 0,..., 1MIN MAX

grid grid t gridP P P t T     (39) 

, 0,..., 1MIN MAX

j j t jD D D t T     (40) 

 

 

     

 

, , , , 0,..., 1MIN MAX

M j M j t M jQ Q Q t T     (41) 

where: ,n jA  is equal to 1 if the element j is connected to n 

and 0 otherwise. , ,n p tP  is the power, unrestricted in sign, 

from node n to node p in kW, i.e. the p.u. value ( , ,n p tp ) 

multiplied by the base bS . , ,M j tQ  is reactive power exchange 

with the main grid and , ,n p tQ  represents reactive power flows 

in kVAR. Other parameters represent bounds for decision 

variables. 

 

3.1 Emulation of the LUs system model 

The AGG emulates the behaviour of the LUs based on 

limited information, thus using a simplified version of the 

system model adopted in 3.1 and 3.2. Specifically, the 

constraints related to the emulation of microgrids are (Ferro 

et al 2018) : 

 

, , , , , , , , , , ,el j t RES j t S j t j t AGG j t f j tP P P D D D     
 

, 0,..., 1j M t T    
(42) 

, , , , , , , , , 0,..., 1RES j t S j t M j t f j tQ Q Q Q j M t T       (43) 

, , , , , , , , , ,th j t th B j t th RES j t H j tP P P D    

, 0,..., 1j M t T    
(44) 

, , ,

, 1 , ,

j t S j t

j t j t j t

j

P
SOC a SOC

CAP





 

 
, 0,..., 1j M t T    

(45) 

, , ,

,

,

0
, 0,..., 1

1/

c j S j t

j t

d j

if P
j M t T

otherwise







   


 (46) 

, , , , , ,

MIN MAX

S j t S j t S j tQ Q Q             , 0,..., 1j M t T    (47) 

AGG, , , ,

MAX

j t AGG j tD D                 , 0,..., 1j M t T    (48) 

1

AGG, ,

0

T

j t AGG,TOT, j

t

D D




          j M  (49) 

where , ,el j tP  is the power from the traditional sources, , ,f j tD  

is the forecasted electrical load of each microgrid, , ,f j tQ  is the 

forecasted reactive load, , ,th j tP  is the thermal power from 

traditional sources, jCAP  is the capacity of the storage in 

microgrid j, , ,,c j d j   are efficiency parameters in charging 

and discharging modes, ,t ja  is a loss coefficient due to the 

internal losses, AGG,TOT, jD  is the daily maximum total amount 

of demand reduction. 

 

In the case of buildings, the considered constraints are: 

, , , , , , , ,RES j t S j t j t AGG j t j tP P D D L    
 

, 0,..., 1j B t T    
(50) 

, , , , , , 0,..., 1j t HV j t f j tL q D j B t T      (51) 

, , , , , , , ,RES j t S j t M j t f j tQ Q Q Q  
        

, 0,..., 1j B t T    
(52) 

, 1 , , , ,

, ,

1
[ ( )]j t j t s j t j t ext t

j th ext j

T T q T T
C R




   

 
, 0,..., 1j B t T    

(53) 

,

MIN MAX

j j t jT T T      , 0,..., 1j B t T    (54) 

where ,j tL  is the load given by the electrical power 

consumed by heat pumps , ,HV j tq  plus the forecasted 

electrical demand , ,f j tD , ,j tT  is the temperature of the overall 

building j, jC  is the thermal capacitance in building j [J/K], 

,ext tT  is the external temperature [K], ,j tq  is the thermal 

power provided by heat pumps, , ,th ext jR  is the resistance 

between building j and the external environment, and s  is a 

known conversion parameter. 

 

4. CASE STUDY APPLICATION 

The developed bi-level architecture has been applied to a 

case study with four different LUs. Half of them are 

buildings and the remaining part are microgrids (Delfino et 

al., 2019). For the sake of brevity, only the results of one 

building and one microgrid (whose indexes are 1 and 3 

respectively) will be reported. Moreover, the thermal part 

will not be presented. 

The results of the upper level are the reference values for the 

LUs. The optimal solutions in Fig. 1 and Fig. 2 show the 

additional power reduction and the power exchange with the 

main grid, respectively. The load reduction is lower in 

buildings and higher in the microgrids: this can be explained 

by considering that, in the present example, the microgrids 

are characterized by a larger overall electricity consumption 

than single buildings, resulting in higher flexibility.  

 

Fig. 1. Reference values for power reduction in each LU. 

The local users track the optimal reference values coming 

from the upper level. Fig. 3 shows the resulting optimal 

power exchange ,j tD  with the grid compared with its 

reference value ,j tD . 
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Fig. 2. Reference values of power exchanged between the 

grid and the LUs. 

Instead, Fig. 4 shows the resulting electrical balance of the 

microgrids.  In the case of buildings,  Fig. 5 represents the 

power exchange between the considered building and the grid 

compared with the reference value provided by the AGG. 

Both in the case of the building and in the one of the 

microgrid, the LU optimization makes it possible for the 

users to follow the reference values specified by the AGG.  

 

Fig. 3. The power exchange between the microgrids and the 

grid, compared to the reference value. 

 

Fig. 4. Electrical balance for microgrid 3. 

 

Fig. 5. The power exchange between building 1 and the grid, 

compared to the reference value. 

 

5. CONCLUSIONS AND FUTURE DEVELOPMENTS  

In this paper, a new two-stage hierarchical architecture for an 

aggregator of consumers in the balancing market is proposed. 

The lower level makes the users follow the reference values 

given by the upper level as close as possible; the upper level 

minimizes the costs, assigning load reduction set-point to the 

user in a democratic way. The application of the presented 

decision scheme could be exploited within a receding-horizon 

framework, in which at each time step, only the solution 

referring to the next time discretization interval is applied. 

Future developments will concern a solution based on 

distributed optimization and/or the analytical solution of 

some of the decision models. Then, a stochastic optimization 

problem can be formalized. 
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