Fluid flows reveal a wealth of structures, such as vortices and barriers to transport. Usually, either an Eulerian or a Lagrangian frame of reference is employed in order to detect such features of the flow. However, the two frameworks detect structures that have different properties. Indeed, common Eulerian diagnostics (Hua-Klein and Okubo-Weiss criterion) employed in order to detect vortices do not always agree with Lagrangian diagnostics such as finite-time Lyapunov exponents. Besides, the former are Galilean-invariant whereas the latter is objective. However, both the Lagrangian and the Eulerian approaches to coherent structure detection must show some links under any inertial-frame. Compound channels flows have been accurately studied in the past, both from a Lagrangian and an Eulerian point of view. The features detected do not superimpose: Eulerian vortices do not coincide with barriers to transport. The missing link between the two approaches is here recovered thanks to a spectral analysis.

Eulerian spectrum of finite-time Lyapunov exponents in compound channels

Enrile F.;Besio G.;Stocchino A.
2020-01-01

Abstract

Fluid flows reveal a wealth of structures, such as vortices and barriers to transport. Usually, either an Eulerian or a Lagrangian frame of reference is employed in order to detect such features of the flow. However, the two frameworks detect structures that have different properties. Indeed, common Eulerian diagnostics (Hua-Klein and Okubo-Weiss criterion) employed in order to detect vortices do not always agree with Lagrangian diagnostics such as finite-time Lyapunov exponents. Besides, the former are Galilean-invariant whereas the latter is objective. However, both the Lagrangian and the Eulerian approaches to coherent structure detection must show some links under any inertial-frame. Compound channels flows have been accurately studied in the past, both from a Lagrangian and an Eulerian point of view. The features detected do not superimpose: Eulerian vortices do not coincide with barriers to transport. The missing link between the two approaches is here recovered thanks to a spectral analysis.
File in questo prodotto:
File Dimensione Formato  
2020_Meccanica.pdf

accesso aperto

Descrizione: Articolo su rivista
Tipologia: Documento in Post-print
Dimensione 631.49 kB
Formato Adobe PDF
631.49 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1075432
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact