Drug delivery systems (DDS) are artificial devices employed to enhance drug bioavailability during administration to a human body. Among DDS, liposomes are spherical vesicles made of an aqueous core surrounded by phospholipids. Conventional production methods are characterized by several drawbacks; therefore, Supercritical assisted Liposome formation (SuperLip) has been developed to overcome these problems. Considering that the use of high pressures involves high energy cost, in this paper, sustainability indicators were calculated to quantitatively evaluate the emissions related to the attainment of liposomes containing daunorubicin (a model antibiotic drug) using the SuperLip process. The indicators were depicted using a spider diagram to raise the actual weaknesses of this technique; some variations were proposed in the process layout to solve the critical issues. According to the literature, many studies related to the pharmaceutical industry are expressed in terms of solid, liquid waste, and toxic emissions; however, liposomes have never explicitly been considered for an analysis of environmental sustainability.

Environmental and sustainability analysis of a supercritical carbon dioxide-assisted process for pharmaceutical applications

Campardelli R.;
2021

Abstract

Drug delivery systems (DDS) are artificial devices employed to enhance drug bioavailability during administration to a human body. Among DDS, liposomes are spherical vesicles made of an aqueous core surrounded by phospholipids. Conventional production methods are characterized by several drawbacks; therefore, Supercritical assisted Liposome formation (SuperLip) has been developed to overcome these problems. Considering that the use of high pressures involves high energy cost, in this paper, sustainability indicators were calculated to quantitatively evaluate the emissions related to the attainment of liposomes containing daunorubicin (a model antibiotic drug) using the SuperLip process. The indicators were depicted using a spider diagram to raise the actual weaknesses of this technique; some variations were proposed in the process layout to solve the critical issues. According to the literature, many studies related to the pharmaceutical industry are expressed in terms of solid, liquid waste, and toxic emissions; however, liposomes have never explicitly been considered for an analysis of environmental sustainability.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1074997
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact