Background: Patients with thoracic malignancies are at increased risk for mortality from Coronavirus disease 2019 (COVID-19) and large number of intertwined prognostic variables have been identified so far. Methods: Capitalizing data from the TERAVOLT registry, a global study created with the aim of describing the impact of COVID-19 in patients with thoracic malignancies, we used a clustering approach, a fast-backward step-down selection procedure and a tree-based model to screen and optimize a broad panel of demographics, clinical COVID-19 and cancer characteristics. Results: As of April 15, 2021, 1491 consecutive evaluable patients from 18 countries were included in the analysis. With a mean observation period of 42 days, 361 events were reported with an all-cause case fatality rate of 24.2%. The clustering procedure screened approximately 73 covariates in 13 clusters. A further multivariable logistic regression for the association between clusters and death was performed, resulting in five clusters significantly associated with the outcome. The fast-backward step-down selection then identified seven major determinants of death ECOG-PS (OR 2.47 1.87-3.26), neutrophil count (OR 2.46 1.76-3.44), serum procalcitonin (OR 2.37 1.64-3.43), development of pneumonia (OR 1.95 1.48-2.58), c-reactive protein (CRP) (OR 1.90 1.43-2.51), tumor stage at COVID-19 diagnosis (OR 1.97 1.46-2.66) and age (OR 1.71 1.29-2.26). The ROC analysis for death of the selected model confirmed its diagnostic ability (AUC 0.78; 95%CI: 0.75 - 0.81). The nomogram was able to classify the COVID-19 mortality in an interval ranging from 8% to 90% and the tree-based model recognized ECOG-PS, neutrophil count and CRP as the major determinants of prognosis. Conclusion: From 73 variables analyzed, seven major determinants of death have been identified. Poor ECOG-PS demonstrated the strongest association with poor outcome from COVID-19. With our analysis we provide clinicians with a definitive prognostication system to help determine the risk of mortality for patients with thoracic malignancies and COVID-19.

A definitive prognostication system for patients with thoracic malignancies diagnosed with COVID-19: an update from the TERAVOLT registry

Genova, Carlo;
2022-01-01

Abstract

Background: Patients with thoracic malignancies are at increased risk for mortality from Coronavirus disease 2019 (COVID-19) and large number of intertwined prognostic variables have been identified so far. Methods: Capitalizing data from the TERAVOLT registry, a global study created with the aim of describing the impact of COVID-19 in patients with thoracic malignancies, we used a clustering approach, a fast-backward step-down selection procedure and a tree-based model to screen and optimize a broad panel of demographics, clinical COVID-19 and cancer characteristics. Results: As of April 15, 2021, 1491 consecutive evaluable patients from 18 countries were included in the analysis. With a mean observation period of 42 days, 361 events were reported with an all-cause case fatality rate of 24.2%. The clustering procedure screened approximately 73 covariates in 13 clusters. A further multivariable logistic regression for the association between clusters and death was performed, resulting in five clusters significantly associated with the outcome. The fast-backward step-down selection then identified seven major determinants of death ECOG-PS (OR 2.47 1.87-3.26), neutrophil count (OR 2.46 1.76-3.44), serum procalcitonin (OR 2.37 1.64-3.43), development of pneumonia (OR 1.95 1.48-2.58), c-reactive protein (CRP) (OR 1.90 1.43-2.51), tumor stage at COVID-19 diagnosis (OR 1.97 1.46-2.66) and age (OR 1.71 1.29-2.26). The ROC analysis for death of the selected model confirmed its diagnostic ability (AUC 0.78; 95%CI: 0.75 - 0.81). The nomogram was able to classify the COVID-19 mortality in an interval ranging from 8% to 90% and the tree-based model recognized ECOG-PS, neutrophil count and CRP as the major determinants of prognosis. Conclusion: From 73 variables analyzed, seven major determinants of death have been identified. Poor ECOG-PS demonstrated the strongest association with poor outcome from COVID-19. With our analysis we provide clinicians with a definitive prognostication system to help determine the risk of mortality for patients with thoracic malignancies and COVID-19.
File in questo prodotto:
File Dimensione Formato  
Whisenant Teravolt update.pdf

Open Access dal 02/02/2023

Descrizione: Articolo in PDF
Tipologia: Documento in Post-print
Dimensione 1.65 MB
Formato Adobe PDF
1.65 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1073046
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact