We present a very simple yet powerful generalization of a previously described model and algorithm for estimation of multiple dipoles from magneto/electro-encephalographic data. Specifically, the generalization consists in the introduction of a log-uniform hyperprior on the standard deviation of a set of conditionally linear/Gaussian variables. We use numerical simulations and an experimental dataset to show that the approximation to the posterior distribution remains extremely stable under a wide range of values of the hyperparameter, virtually removing the dependence on the hyperparameter.

WHERE BAYES TWEAKS GAUSS: CONDITIONALLY GAUSSIAN PRIORS FOR STABLE MULTI-DIPOLE ESTIMATION

Viani A.;Luria G.;Sorrentino A.;
2021-01-01

Abstract

We present a very simple yet powerful generalization of a previously described model and algorithm for estimation of multiple dipoles from magneto/electro-encephalographic data. Specifically, the generalization consists in the introduction of a log-uniform hyperprior on the standard deviation of a set of conditionally linear/Gaussian variables. We use numerical simulations and an experimental dataset to show that the approximation to the posterior distribution remains extremely stable under a wide range of values of the hyperparameter, virtually removing the dependence on the hyperparameter.
File in questo prodotto:
File Dimensione Formato  
2006.04141.pdf

accesso aperto

Descrizione: Articolo su rivista
Tipologia: Documento in versione editoriale
Dimensione 7.49 MB
Formato Adobe PDF
7.49 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1072294
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact