We investigate the clustering properties of radio sources in the Alternative Data Release 1 of the TIFR GMRT Sky Survey (TGSS), focusing on large angular scales, where previous analyses have detected a large clustering signal. After appropriate data selection, the TGSS sample we use contains ˜110 000 sources selected at 150 MHz over ˜70% of the sky. The survey footprint is largely superimposed on that of the NRAO VLA Sky Survey (NVSS) with the majority of TGSS sources having a counterpart in the NVSS sample. These characteristics make TGSS suitable for large-scale clustering analyses and facilitate the comparison with the results of previous studies. In this analysis we focus on the angular power spectrum, although the angular correlation function is also computed to quantify the contribution of multiple-component radio sources. We find that on large angular scales, corresponding to multipoles 2 ≤ ℓ ≤ 30, the amplitude of the TGSS angular power spectrum is significantly larger than that of the NVSS. We do not identify any observational systematic effects that may explain this mismatch. We have produced a number of physically motivated models for the TGSS angular power spectrum and found that all of them fail to match observations, even when taking into account observational and theoretical uncertainties. The same models provide a good fit to the angular spectrum of the NVSS sources. These results confirm the anomalous nature of the TGSS large-scale power, which has no obvious physical origin and seems to indicate that unknown systematic errors are present in the TGSS dataset.

Clustering properties of TGSS radio sources

Branchini, Enzo;
2019

Abstract

We investigate the clustering properties of radio sources in the Alternative Data Release 1 of the TIFR GMRT Sky Survey (TGSS), focusing on large angular scales, where previous analyses have detected a large clustering signal. After appropriate data selection, the TGSS sample we use contains ˜110 000 sources selected at 150 MHz over ˜70% of the sky. The survey footprint is largely superimposed on that of the NRAO VLA Sky Survey (NVSS) with the majority of TGSS sources having a counterpart in the NVSS sample. These characteristics make TGSS suitable for large-scale clustering analyses and facilitate the comparison with the results of previous studies. In this analysis we focus on the angular power spectrum, although the angular correlation function is also computed to quantify the contribution of multiple-component radio sources. We find that on large angular scales, corresponding to multipoles 2 ≤ ℓ ≤ 30, the amplitude of the TGSS angular power spectrum is significantly larger than that of the NVSS. We do not identify any observational systematic effects that may explain this mismatch. We have produced a number of physically motivated models for the TGSS angular power spectrum and found that all of them fail to match observations, even when taking into account observational and theoretical uncertainties. The same models provide a good fit to the angular spectrum of the NVSS sources. These results confirm the anomalous nature of the TGSS large-scale power, which has no obvious physical origin and seems to indicate that unknown systematic errors are present in the TGSS dataset.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11567/1071172
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 9
social impact