We study the derived critical locus of a function f: [X/G] → 1 on the quotient stack of a smooth affine scheme X by the action of a smooth affine group scheme G. It is shown that dCrit(f) R [Z/G] is a derived quotient stack for a derived affine scheme Z, whose dg-algebra of functions is described explicitly. Our results generalize the classical BV formalism in finite dimensions from Lie algebra to group actions.

Classical BV formalism for group actions

Benini M.;
2023-01-01

Abstract

We study the derived critical locus of a function f: [X/G] → 1 on the quotient stack of a smooth affine scheme X by the action of a smooth affine group scheme G. It is shown that dCrit(f) R [Z/G] is a derived quotient stack for a derived affine scheme Z, whose dg-algebra of functions is described explicitly. Our results generalize the classical BV formalism in finite dimensions from Lie algebra to group actions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1069770
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact