This paper provides a detailed study of 4-dimensional Chern-Simons theory on R2× CP1 for an arbitrary meromorphic 1-form ω on CP1. Using techniques from homotopy theory, the behaviour under finite gauge transformations of a suitably regularised version of the action proposed by Costello and Yamazaki is investigated. Its gauge invariance is related to boundary conditions on the surface defects located at the poles of ω that are determined by isotropic Lie subalgebras of a certain defect Lie algebra. The groupoid of fields satisfying such a boundary condition is proved to be equivalent to a groupoid that implements the boundary condition through a homotopy pullback, leading to the appearance of edge modes. The latter perspective is used to clarify how integrable field theories arise from 4-dimensional Chern-Simons theory.
Homotopical Analysis of 4d Chern-Simons Theory and Integrable Field Theories
Benini M.;
2022-01-01
Abstract
This paper provides a detailed study of 4-dimensional Chern-Simons theory on R2× CP1 for an arbitrary meromorphic 1-form ω on CP1. Using techniques from homotopy theory, the behaviour under finite gauge transformations of a suitably regularised version of the action proposed by Costello and Yamazaki is investigated. Its gauge invariance is related to boundary conditions on the surface defects located at the poles of ω that are determined by isotropic Lie subalgebras of a certain defect Lie algebra. The groupoid of fields satisfying such a boundary condition is proved to be equivalent to a groupoid that implements the boundary condition through a homotopy pullback, leading to the appearance of edge modes. The latter perspective is used to clarify how integrable field theories arise from 4-dimensional Chern-Simons theory.File | Dimensione | Formato | |
---|---|---|---|
CMP 389 (2022) 1417.pdf
accesso aperto
Tipologia:
Documento in versione editoriale
Dimensione
487.26 kB
Formato
Adobe PDF
|
487.26 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.